IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.3, MARCH 2019

331

ASAP: Accelerated Short-Read Alignment
on Programmable Hardware

Subho Sankar Banerjee

, Mohamed El-Hadedy, Jong Bin Lim, Zbigniew T. Kalbarczyk,

Deming Chen, Steven S. Lumetta, and Ravishankar K. lyer

Abstract—The proliferation of high-throughput sequencing machines ensures rapid generation of up to billions of short nucleotide
fragments in a short period of time. This massive amount of sequence data can quickly overwhelm today’s storage and compute
infrastructure. This paper explores the use of hardware acceleration to significantly improve the runtime of short-read alignment, a
crucial step in preprocessing sequenced genomes. We focus on the Levenshtein distance (edit-distance) computation kernel and
propose the ASAP accelerator, which utilizes the intrinsic delay of circuits for edit-distance computation elements as a proxy for
computation. Our design is implemented on an Xilinx Virtex 7 FPGA in an IBM POWERS system that uses the CAPI interface for cache
coherence across the CPU and FPGA. Our design is 200x faster than an equivalent Smith-Waterman-C implementation of the kernel
running on the host processor, 40 — 60x faster than an equivalent Landau-Vishkin-C++ implementation of the kernel running on the
IBM Power8 host processor, and 2x faster for an end-to-end alignment tool for 120—150 base-pair short-read sequences. Further the
design represents a 3760x improvement over the CPU in performance/Watt terms.

Index Terms—Bioinformatics, genomics, levenshtein distance, application-specific processor, hardware accelerator

1 INTRODUCTION

THE advent of high-throughput next-generation sequenc-
ing technology (NGS) has created a deluge of genomic
data for computational analysis [1]. Efficiently processing
this data requires the development of a new generation of
high-performance computing systems that can efficiently
handle such data. This new generation of application-spe-
cific and accelerator-rich computing systems are expected
to gain performance, power, and energy improvements
over traditional systems [2].

A crucial step in a significant number of NGS data analyt-
ics applications (e.g., variant discovery, genome-wide associ-
ation studies, and phylogeny creation) is the mapping of
short fragments of sequenced genetic material (called reads)
to their most likely points of origin in the genome, popularly
called the short-read alignment problem. This paper presents
the design and implementation of ASAP, an accelerator for
computing Levenshtein distance [3], [4] (LD; used inter-
changeably with edit-distance) in the context of the short-
read alignment problem. LD is a measure of the similarity
between strings, which is computed by counting the number
of single-character edits required to change one string into
the other. LD computation is a prominent underlying

o Theauthors are with the Coordinated Science Laboratory, and the Departments
of Computer Science and Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, Urbana, IL 61801. E-mail: {ssbaner2, hadedy,
lim43, kalbarcz, dchen, lumetta, rkiyer j@illinois.edu.

Manuscript received 13 Dec. 2017; revised 31 July 2018; accepted 10 Sept.
2018. Date of publication 11 Oct. 2018; date of current version 19 Feb. 2019.
(Corresponding author: Subho Sankar Banerjee.)

Recommended for acceptance by L. Eeckhout.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2018.2875733

mathematical kernel that is common to a large number of
short-read alignment algorithms and tools (e.g., BLAST [5],
Bowtie [6], [7], BWA [8], and SNAP [9]), and is responsible
for 5070 percent of their runtime [10].

ASAP represents a novel approach to accelerate the LD
computation, in that it uses algorithmic approximations,
and maps these approximations into hardware to signifi-
cantly improve overall performance (~ 200x compared to
the CPU baseline). The core algorithm in ASAP leverages
two key observations about the computation and datasets
involved in the short-read alignment problem:

1) Although all the tools mentioned above calculate the
exact value of LD between pairs of nucleotide
strings, they use them only to build a total ordering
(i.e., an ordered list) of the most likely points of ori-
gin in the genome. The best alignment is the pair of
strings corresponding to the minimum LD in the
ordered list. Hence, it is sufficient to only calculate
the total ordering (in this instance, returning the pair
that corresponds to the minimum LD), and not
essential to compute the exact value of the LD. This
distinction enables approximation in the computa-
tion of LD to gain performance, while preserving the
overall accuracy of the alignment algorithm (which
comes from the total ordering).

2) Modern sequencing platforms (like the Illumina
HiSeq 2,500) represent a very low sequencing error
regime (< 1%) [11], [12], and modern alignment tools
(mentioned above) have accurate candidate region-
matching algorithms (described in Section 2). Hence,
LD computations process significantly —more
“matches” than “mismatches,” in the majority of

0018-9340 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7187-6569
https://orcid.org/0000-0001-7187-6569
https://orcid.org/0000-0001-7187-6569
https://orcid.org/0000-0001-7187-6569
https://orcid.org/0000-0001-7187-6569
https://orcid.org/0000-0003-2245-3038
https://orcid.org/0000-0003-2245-3038
https://orcid.org/0000-0003-2245-3038
https://orcid.org/0000-0003-2245-3038
https://orcid.org/0000-0003-2245-3038
mailto:
mailto:

332

sequencing experiments." The ASAP architecture
uses this heuristic to accelerate LD computation
(described in Sections 3.1 and 3.2).

To take advantage of these observations, ASAP aug-
ments RaceLogic [13]* using application heuristics, as well
as hardware architectural optimizations to realize the
design on FPGAs. In particular, this paper proposes (a) a
mechanism to encode LD computation parameters (e.g.,
gap-penalties; described further in Section 2) into the ASAP
architecture, making it possible to map the time taken to
process a “match” exactly as a circuit delay. This mapping
gives us the ability to tune the performance of ASAP to
match data characteristics; and (b) the use of “zero delay”
circuit elements to explore large portions of the search space
(LDs of substrings of the strings being compared) in parallel
within one clock cycle, and to ignore parts of the search
space that do not contribute to an answer, thereby saving
energy. Overall, ASAP can compute alignments quickly
(~ 200x faster than the CPU baseline and ~ 50x faster than
an equivalent RaceLogic design), and with the same accu-
racy as traditional software- or hardware-based alignment
tools. We leverage reconfigurable FPGA devices to proto-
type ASAP, thereby allowing us to reconfigure the accelera-
tor based on user decisions on input parameters (described
in Section 2), as well as to adapt the accelerator to input
NGS datasets of varying read lengths.

Contributions. To summarize, the primary contributions
of this paper are as follows:

1) Presents a measurement-driven study that demon-
strates that computation of LD represents a signifi-
cant portion of the runtime of several short-read
alignment programs.

2) Builds on top of the delay-based computation para-
digm presented in [13] to encode gap-penalties as
“zero delay” circuit elements. This allows us to cal-
culate approximate the LD between strings by using
combinational circuit elements. We prove the cor-
rectness of this encoding and demonstrate that the
result of the approximation can be used as a proxy
for computing LD in short-read aligners. That is, a
tool using the approximation and the accelerator
produces alignments identical to those of tools based
on traditional methods (e.g., BWA-MEM [8]).

3) Presents an FPGA-based implementation of the accel-
erated LD computation in the ASAP accelerator that
leverages the coherent accelerator-processor interface
(CAPI) [14], [15] for communication between the host
and accelerator.

4) Demonstrates that ASAP on an FPGA is able to accel-
erate the runtime of the LD computation by 200x
compared to a Smith-Waterman-based and 40 — 60x
compared to a Landau-Vishkin based IBM Power8
CPU execution. As well as 5x better that competing
FPGA implementations.

1. This is a facet of the accurate sequencing process and the thor-
oughly validated reference genome for human subjects. This observa-
tion will also apply to most model organisms whose genome has been
extensively studied.

2. RaceLogic uses propagation delay of circuit elements to perform
computations.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.3, MARCH 2019

(5) Demonstrates that integration of the ASAP accelerator
into a short-read alignment frameworks SNAP and
BWA-MEM. In both cases this results in a 2%, 1.9x
performance improvement respectively, which is
close to the Amdahl’s law limits for these applications.

Other Applications. Our approach can be adapted to a
variety of other problems in which a total ordering of LDs is
computed. For example, in signal processing, where similar-
ity between signals is computed [3]; in text retrieval, where
misspelled words have to be accounted for in a dictio-
nary [16]; and in computer-security where virus- and intru-
sion-detection requires comparison of signatures [17].

Organization. The remainder of this paper is organized as
follows. Section 2 describes LD computation and its use in
popular short-read alignment tools. Section 3 briefly
describes 1) a mathematical formalism for encoding compu-
tation in circuit delays; 2) the approximation at the core of
ASAP and prove its correctness; and 3) presents the hard-
ware architecture of ASAP leverages this approximation
algorithm. Section 4 presents the evaluation of the accelera-
tor. Section 5 compares the ASAP approach to other hard-
ware accelerated approaches for computing LD, and,
finally, we conclude in Section 6.

2 LEVENSHTEIN DISTANCE COMPUTATION AND
SHORT-READ ALIGNMENT

Traditional methods for aligning reads to a reference
genome find the position (locus) of a single read in the refer-
ence by minimizing the maximum edit distance between
the short read being aligned (called the query, and denoted
by @) and the reference genome sequence. The Smith-
Waterman algorithm (SW) [18] and Needleman-Wunsch
algorithm (NW) [19] utilize a dynamic programming-based
algorithm to calculate the alignment score (Levenshtein dis-
tance) between the read and a particular section R of the ref-
erence genome, accounting for base pair substitutions,
insertions, and deletions. Both of these algorithms work by
constructing a matrix S (which is used interchangeably
with lattice) of size Iy x Ir, where [g and [y are the lengths
of the two strings, between which the edit distance must be
calculated. Consider a matrix S in which the (¢, j)th entry,
S(i, j), is the minimum edit distance between the sub strings
Q1 : jland R[1 : ¢]. S(4, j) is recursively defined as

S(i—1,7) +A(—, Rj),
S(i—1,j—1) +AQi, R;)

S(i,7) = min

where A corresponds to input parameters called gap penalties.
These A-parameters assign scores for insertion, deletion,
match,®> or mismatch between the sequences such that a
more desirable outcome has a smaller score associated with
it. The parameters A(Q;, R;), A(—, R;) and A(Q;,—) corre-
spond to the match/mismatch, deletion, and insertion penal-
ties respectively. These parameters are chosen to optimize
the accuracy of alignments based on prior information
about the sequences being compared (e.g., evolutionary

3. Gap penalties traditionally do not have match scores. We group
them together for simplicity in our notation.

BANERJEE ET AL.: ASAP: ACCELERATED SHORT-READ ALIGNMENT ON PROGRAMMABLE HARDWARE 333

Output for the
AlCIACIAIAIC]T Needleman-Wunsch
01 3|14|5|6|7]|8 Algorithm
=
AllT[O0]| I |2|3]|4|5]|6]|7 A-CACAACT
{ [
G| 2 I‘ 2|3|4|5|6|7|8 AGCACA-CA
CcC|3]|2 I‘ 2134|5617
Al4 3|21 12[3[|4|5]|6
* Output for the
C|5(4|3]|2 I‘ 2 (3 (4|5 Smith-Waterman
Ale|s|4|3]2]1<2]3]4 Algorithm
A-CACA-ACT
cC|7|6|5|4|3 |2 3|23
Al 8|7 |6|5|4 |3 |2|3|4 AGCACACA

Fig. 1. The matrix S for the strings AGCACACA and ACACAACT, assuming
A(Match) =0, A(Mismatch) =2, and A(Insert) = A(Delete) =1. The
colored paths from S(8,8) and S(8,6) to S(0,0) show the optimal align-
ments produced by the NW and SW algorithms, respectively.

information about mutations in a population [20], [21], [22]).
This paper describes the use of constant gap penalties (i.e., a
fixed score is assigned to every gap between nucleotides).
That s

A(Qi,R;) = A(Match)if Q; = R;
A(Qi,R;) = A(Mismatch) if Q; # R; e
A(—7Rj/) = A(Delete) POV R, Q. (2)
A(Qi,—) = A(Insert)

Such gap penalties are are commonly used in DNA align-
ment (e.g., in NCBI-BLASTN, or WU-BLASTN [20]).

The NW algorithm computes a global alignment in
which the entirety of the query is matched to the reference,
as shown in Fig. 1. It does so by computing the value of
S(m,n). The SW algorithm computes a local alignment and
matches the largest (substring) of the query to the reference,
and, hence, needs to calculate the minimum value in the
row S(m,—). For example, when the strings AGCACACA
and ACACAACT are compared with constant penalties
A(Match) = 0, A(Mismatch) = 2, and A(Insert) = A(Delete) = 1,
we get the matrix described in Fig. 1. The optimal alignment
is then calculated from this matrix by finding the minimum
weighted path (in S) from (m,n) to (0,0) in the NW algo-
rithm and (m,N) to (0,0) in the SW algorithm. A corre-
sponds to the largest substring of the reference to which the
query string maps with the lowest LD.

Although these methods are guaranteed to produce the
optimal alignment, they are prohibitively expensive for
whole-genome alignments because of O(lg x [z) space and
time complexity. Therefore, a large number of alignment
tools are designed to heuristically reduce the search space
required to find the optimal match of a query in the refer-
ence. An extensive amount of research, e.g., [5], [6], [7], [8],
[9], has been conducted, focusing on indexing strategies
for the reference genome to rapidly reduce the number of
candidate locations that have to be searched. Most of these
tools use some variant of a backwards search algorithm
utilizing an FM-index [26] or a hash-table-like data struc-
ture. As a result of this reduction in the search space, linear-
time heuristic algorithms like the Landau-Vishkin algorithm
(LV) [25] (in addition to traditional algorithms like SW and

NW) can be applied to the sequence alignment problem in
SNAP [9], to compute edit distance accurately up to a par-
ticular number of mismatches (assuming that correct align-
ments have lower numbers of mismatches). Algorithm 1
describes the skeleton of these heuristic accelerated algo-
rithms for single-ended read alignment [27]. The definitions
of the Build_Index, Candidate_Locations, Edit_
Distance, and Find_Config functions define different
variants of these algorithms. For example, Table 1 defines
the BWA-MEM and SNAP alignment tools by substituting
these placeholder functions with specific algorithms.

Algorithm 1. Algorithmic Skeleton for Single-Ended
Short-Read-Alignment Algorithms

Data: NGS Read Dataset, Reference Genome
Result: Aligned positions and mapping of reads in Reference
Genome
ngsdata — Set of reads;
re ference «— String(s) corresponding to a reference;
inder — Build_Index(reference);
alignment — ();
for read € ngsdata do
locs — Candidate_Locations(read, index);
opt < argmin,,.c.(Edit_Distance(read, loc));
config < Find_Config(read, opt);
alignment — alignment U con fig;
end
return alignment;

— O 00O NONULks WN -~

p—

We performed a profiling study of the SNAP aligner on
an in-sillico (from an Illumina HiSeq 2,500) whole human
genome [28] with 50x coverage (i.e., each nucleotide of the
reference is backed by an average of 50 reads that align to
that base) on the Blue Waters [29] supercomputer. We chose
the SNAP aligner in particular because it is significantly
faster than other alignment tools like BWA and Bowtie.
Also, as the LV algorithm used in SNAP has a linear time
complexity, its comparison to ASAP as the CPU baseline is
much more challenging. Table 2 describes the distribution
of runtime across for the SNAP aligner for corresponding
steps of Algorithm 1.* These measurements, along with
static analysis of Algorithm 1, show the following:

1) The LD computation corresponds to nearly 60 per-
cent of the running time of the SNAP aligner.

2) The LD computation is one of the most frequently
called algorithmic kernels in the alignment process
(on average called 54.1 times per read).

3) The LD kernel is used to build a total ordering of all
candidate locations for a read in the reference; refer
to Line 7 of Algorithm 1.

4) The backtrack-based alignment [18], [19] is computed
only for the best-matched location in the reference.

5) The remaining portion of SNAP’s runtime (after the
LD computation) is spent in either memory or 10
bound computation (e.g., hash table look-ups and

4. Note that some steps of the SNAP aligner implementation
includes a variety of other miscellaneous tasks, e.g., memory allocation,
IO. These are collectively described in the “Misc” category. Also note,
the SNAP aligner is optimized to perform asynchronous pre-fetch
based disk IO. Hence wait time for IO is minimized.

334

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.3, MARCH 2019

TABLE 1
Mathematical Formulation of Different Aligners to Fit them into the Structure of Algorithm 1
Function BWA-MEM [8] SNAP [9]
Build_Index Burrows-Wheeler transform [23] of prefix trie ~ Ukkonen’s algorithm [24]
Candidate_Locations Prefix trie traversal Hash table lookup

Edit_Distance
Find_Config

Smith-Waterman algorithm [18]
Smith-Waterman algorithm [18]

Landau-Vishkin algorithm [25]
Landau-Vishkin algorithm [25]

reading/writing files). This part is unsuitable for
acceleration on PCle-based devices because of the
time-cost associated with performing data transfer
over the bus.

3 DESIGN OF THE ASAP ACCELERATOR

This section describes the approximation algorithm that
drives the design of ASAP, provides a proof for its correct-
ness, and describes its implementation in programmable
hardware. Section 3.1 briefly summarizes the RaceLogic
paper [13], describing an formalizing the encoding the com-
putation of LD scores into circuit propagation delay. Section
3.2 describes the approximation at the heart of ASAP: using
the ability to directly tune the performance of the algorithm
to input-data characteristics (i.e., using circuit propagation
delays encode both the algorithm and its computation
time), we show a method to chose appropriate propagation
delays to compute approximate answers for LD while main-
taining their total ordering (i.e., satisfy the application
invariant for correctness). Finally, Sections 3.3 and 3.4
describes the ASAP FPGA implementation.

3.1 Encoding LD Computation as Propagation
Delays

The core idea is to map addition and minimization, the two

mathematical operators necessary for the recursive compu-

tation defined in (1), to particular topologies of circuit ele-

ments. Fig. 2 illustrates the mapping explained here:

1) If circuit elements are combined in series, the net
propagation delay of a signal is the sum of the prop-
agation delays for all of the individual elements.
This construction is a proxy for addition.

2) If two circuit elements are connected to an OR gate,
the signal that emerges out of the OR gate corre-
sponds to the signal that arrived first at the gate.
This construction is a proxy for the minimization
operator (in particular, the rising edge of the OR
gate’s output computes a minimization in time).

TABLE 2
Distribution of Runtime Across the Steps of
Algorithm 1 for the SNAP Tool Aligning an
In-Sillico Human Genome with 50x Coverage

Lines in Algorithm 1~ % of runtime # of calls
Line 5 6.79 1.5 x 100
Line 6 18.59 6 x 1010

Line 7 59.22 8.3 x 101
Line 8 9.25 1x 10

Misc 6.15 -

For example, Fig. 3 demonstrates the computation of
“min(X + 2, X + 3)” using the aforementioned delay based
computing. In the example, X corresponds to an arbitrary
input signal that is represented in the delay encoding, the 2-
and 3-length shift register serving as the delay element
implementing the - 4 2 and - + 3 operator respectively, the
OR gate serves as the minimization operator and the
counter serving as the decoder.

We formalize this delay based computation succinctly in
the following lemma.

Lemma 1. Propagation-delay-based computation can occur on a
tropical semiring structure T over {0} UZ™ (ie., time mea-
sured in clock ticks) that defines a binary addition operation, a
minimization operator (using an OR gate), and a maximization
operator (using an AND gate).

The delay-based proxies for the addition and minimiza-
tion operators can be used by replacing the LD values S(i, j)
in (1) with the equivalent propagation delays. The resulting
circuit represents the application of the addition and mini-
mization operators in the computation of S(i,j). Fig. 4
shows the structure of the circuit that produces this compu-
tation. It is composed of a lattice of Iy x {p delay elements
(DEs). The connections in the lattice build on the recursive
definition of S: each DE D(i, j)’s inputs are connected to the

Inputl| Output
A Input2

Inputl | b4

Input [propagation Propagation | QUtPut
Delay DI Delay D2

Input Input2

Output _ Output

Tim;

Tim;

Net delay = DI + D2 Output picks the signal which arrives first

OR-gate as a proxy for choosing
signal with minimum delay

Addition of propagation delays as a
proxy for addition

Fig. 2. Computing with propagation delays: Delay-based proxy for the
addition operator is a series connection, and the proxy for the min opera-
tor is the OR gate.

Encoding »1 Computation »| Decoding
X ~ binary signal
Values 2, 3 ~ 2,3 Clock; 2 represented as SR
***** Output

Width Shifc Register | "MPutX|

b e]
(encoded | !
form)

min(X+2, X+3)
Counter [—*
(decoded form)

dis

easuring intervals of time

i
i
i
i
i
i
operator 1 Decoding is performed by
;om
3 represented as SR !
i

Fig. 3. Example of the encoding, computation, and decoding phase for
computing “min(X + 2, X + 3)” using the circuit-delay proposed in Race-
Logic [13]. Note that we present this example using shift-registers for
delay elements as opposed to comparators proposed in [13].

BANERJEE ET AL.: ASAP: ACCELERATED SHORT-READ ALIGNMENT ON PROGRAMMABLE HARDWARE 335

Input Signal
q

Output of NW

en| Counter Output of SW

Fig. 4. High-level design of the ASAP accelerator to compute the mini-
mum edit distance between two strings. The accelerator lattice is of size
lg x lp, where Iy and I are the sizes of the query and reference,
respectively.

outputs of the preceding elements D(: — 1,5 — 1), D(i — 1,
Jj),and D(4, j — 1), and its outputs are connected to the input
of D(i+1,j+1), D(i+1,5), and D(i, j+ 1). At a high level,
each DE is composed of three delay blocks: 1) D), (delay
due to match or mismatch at (i,5)), 2) D; (delay due to
insertion at (4, j)), and 3) D (delay due to deletion at (3, j)).
This design is specialized for FPGAs in Section 3.3)

The computation can be started by injecting a high signal
(logic value 1) at the inputs of index D(0, 0) in the array. The
time-encoded value of the LD is then found by measuring
the propagation delay of the signal exiting the array of delay
elements. Note that the delay-based computation can be
applied to all variants (SW, NW, and LV) of the LD compu-
tation as follows.

1) The delay-based version of the SW variant can be
computed by measuring the delay between the intro-
duction of the input signal in the lattice, and its emer-
gence at any of the delay elements on the last row, i.e.,
(lr, —)th DE. Fig. 4 illustrates this configuration.

2) The delay-based version of the NW variant can be
computed by measuring the delay between the intro-
duction of the input signal in the lattice, and its
emergence at the (I, lg)th DE. This configuration is
also shown in Fig. 4.

3) The delay-based version of the LV variant can be
computed by assigning the maximum permissible
LD as the result of the computation. This represents
the “timeout” with which the signal wavefront will
emerge from the DE lattice. If the timeout is trig-
gered, the maximum value of LD, as set by the user,
is used as the result of the computation. One delay
element and one AND gate (not shown in the Fig. 4)
suffice to implement the timeout.

3.2 Approximating LD Computations in ASAP

A key aspect of the aforementioned method is the mapping
of gap-penalty parameters (A-parameters) to their corre-
sponding circuit delays. The ASAP accelerator uses this
mapping both to encode the approximation (mentioned in
Section 1), and to reduce the time taken to do the “match”-
based computation. Both actions are formally stated below.

Definition 1. A Delay Encoding Function £:R — 7T is a
mapping between the set of real numbers and its propagation-
delay-based representation. £ is constrained to obey the Cauchy
functional equation (E(x + y) = E(z) + E(y)).

More general delay encoding functions can be consid-
ered, for example in analog circuits, where circuit elements
do not exhibit linear behavior for all inputs. We constrain
ourselves to those that satisfy the Cauchy functional equa-
tion (CFE) because of simplicity in proving of correctness of
the transformation. Although the domain of £ can be the set
of real numbers R, the ASAP implementation presented in
this paper uses integer or rational gap penalties which can
be easily mapped to integer delay values (which can further
be represented as a multiples of the clock width).

Definition 2. A §-parameter is the time-encoded representation
of a user-inputted A-parameter. That is

8(Insert) = £(A(Insert))
3(Delete) = E(A(Delete)) 3)
8(Match) = £(A(Match))

8(Mismatch) = £(A(Mismatch)).

These parameters are used to define the delays in the Dy, Dy,
and Dp blocks. Note that we have assumed that
A(Match) = 0, and thus §(Match) = £(0) is also 0 based on
Definition 1.

Based on Definitions 1 and 2, we now show that any
encoding of §-parameters based on £ produces the same
ordering of LDs as the original algorithm.

Lemma 2. When a query string Q) and a reference string R are
compared under the traditional (see (1)) and delay-based algo-
rithm for computing LD at loci 1y, ...,1, of the reference, to
produce LDs ei,... e, and propagation delays di,...,d,,
respectively, then d; = E(e;), and consequently

e < €j<:>€(€7j) < 5(6;)@617 < dj V’L,j

Lemma 2 is sufficient to show that using the ASAP accel-
erator to compute LD in the context of Algorithm 1 (in
line 7; i.e., using an “argmin” operator over the results of
multiple executions of the ASAP accelerator) produces the
same result as the traditional algorithm (without requiring
the computation of the inverse for £). A key observation in
the formalism of £ is that the choice of the numerical values
of & can be tuned to directly change the performance of the
accelerator, as they corresponds to circuit propagation
delays. That is, the parameters and inputs to the accelerator
jointly define the net propagation delay of the circuit. Below
we demonstrate one such transformation, which forms the
core of the approximation used in ASAP.

Lemma 3. When a query string Q) and a reference string R are
compared at loci ly,...,1l, of the reference, they produce LDs
€1,...,ep for gap penalties A, and LDs €}, . . ., €/, for gap penal-
ties A + k, for some number k. The € obey the relationship:
e = e; + n;k, for some n; € Z such that (n; > 0) A (e; < e;<
n; < n;), and consequently

’ g
e < ejee; < €; Vi, j.

Our algorithm for the approximation at the core of ASAP
uses Lemmas 2 and 3 to select values of the delay-encoded
parameters that correspond to minimizing the time taken to
process a dataset. For example, to optimize performance for

336 IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.3, MARCH 2019
T=0 T=I T=2 T=3 T=4
AlcA]c]A]AC]T AlCAC[A]A]C]T Alc[Ac]A]AlC]T Alca[c]AA]c]T Alc[Aa[c[A]A]c]T
o | oI | o 1]2] 01 23 o1 234
Al o All o1 Al1 o 12 Al o 1 2]3 Al o 1 2[3]4
G el [l | lcl2l12 lcl2l12]3 |2 12]3]4
[C I cl 212 cl3]21]2]3 cl3l2 1234
A A I A 2|1 Al [3]212]3 Al4l312 1 234
[C 1 [2|12 [32123 c| [4l3]2 1 2/3]4
A A 1 A 1[2 A 3]2]12]3 A 43|21 2/3[4
C C | C 2[|2 C 312[3]2]3 C 4|3/2[3]2]3
A A [] A 2 A 3[2]3 A 413234
Unexplored search- Edit—distance‘ Edit-distance

from SW atT=2

space

from NW at T=4

Fig. 5. An example of the ASAP accelerator processing the same inputs used in Fig. 1. The signal wavefront is shown progressing through the ASAP
lattice until the outputs of the SW and NW algorithms are produced in 2 and 4 clock cycles, respectively. The values in the matrix represent the clock

cycles in which the corresponding DEs were enabled.

our observed case of most nucleotides corresponding to
“matches,” we modify the gap-penalties to set the match
penalty (i.e., §(Match)) to 0 cycles.” This transformation uses
a two-step process to convert (encode) user-inputted
A-parameters into §-parameters:

1) A+ A+k, choosing k so that A(Match) = 0 after the
transformation;
2) A+kw— EA+E), with &(x) =maz to produce the

required delay value.®

As a result, the parameters in the LD algorithm are
tweaked to better suit the delay-based computation hard-
ware. The answer (i.e., the exact values of LD) produced by
this approximate version of the algorithm is not identical to
that produced by the original algorithm. However, based
on the aforementioned lemmas, we can see that the total
ordering created by the approximated LDs is identical to
that of the original algorithm. Furthermore, assuming that
most nucleotide comparisons are matches (which is true for
the indexed reference-based techniques described in Sec-
tion 2), this encoding ensures that (almost) zero time is
taken to explore large portions of the search space that cor-
respond to matches. We explore the relation of this optimi-
zation to timing closure on the FPGA design in Section 3.3.
In other re-sequencing experiments, where “matches” do
not represent the common computation, a user can set
3(k) = 0 for k € {Insert, Delete, Mismatch}. Note that in our
formulation of the problem (as described in Section 2),
A(Match) is required to be the minimum positive value
amongst all the A-parameters.

Consider the example of computing the LD between the
strings AGCACACA and ACAACAACT, presented in Section 2.
Based on our encoding mechanism (k=0,m =1), we
compute the §-parameters of the ASAP accelerator as
§(Match) = 0, §(Mismatch) = 2, and §(Insert) = §(Delete) = 1.
Fig. 5 illustrates the propagation of the signal wavefront
through the ASAP accelerator for that example. The acceler-
ator produces an output for the SW notion of LD (local
alignment) in two clock cycles and the NW notion of LD
(global alignment) in four clock cycles. The figure shows the

5. True “0 cycle” propagation delay is not possible because of finite
combinational and wire delays in the circuit. Here we imply that the
computation is done in combinational logic, whose propagation delay
is much much lower than the clock width of the circuit (i.e., 0 time).
This is explained further in Section 3.3.

6. The choice of k and m has to ensure that none of the encoded gap
penalties are negative. As the encoded values represent circuit propa-
gation delays, negative numbers are meaning]less.

portion of the array explored and the value of the propaga-
tion delay at each element D(i,j) of the lattice. Note that
some portions of the array are not explored at all (e.g., for
SW and NW, only 25 and 53 DEs out of a total of 81 are trig-
gered, respectively). This design thus provides a large sav-
ings in both time (using “zero delay” circuit components for
the most commonly used computation) and power (clock-
gating unused DEs with their input signals ensures minimal
power usage) compared to traditional methods.

To summarize, using the encoding of §-parameters
described in this section, the ASAP accelerator has two clear
advantages over traditional techniques:

1) Faster Processing: One can explore large portions of
the search space in a small amount of time by setting
delay parameters appropriately.

2) Energy Savings: DEs in the ASAP lattice are used only

when their output can contribute to the answer;
otherwise, they are switched off to save energy. This
can be accomplished by clock-gating the DEs with
their input signal.

3.3 ASAP: The FPGA Implementation
3.3.1 Why FPGA?

The techniques discussed so far in the paper represent an
approximation technique and architecture, one which can be
implemented ASICs, FPGAs, or any other platform. The
original RaceLogic design was demonstrated in simulation
as an ASIC [13]. However, some key characteristics of the
short-read alignment problem and the ASAP architecture
make ASAP particularly suitable for FPGAs, as they offer
programmability and reconfiguration. The ASAP accelerator
is runtime-programmable only for changing the values of
gap penalties. The input data size, which defines the size of
the accelerator lattice, is fixed at compile time. To allow users
to sweep experiment such “meta-parameters” (i.e., input
data size, gap-penalty bit-width, and input encoding), ASAP
is designed to be re-synthesized and re-programmed on an
FPGA. Potentially, the use of partial reconfiguration can
allow users to change these parameters on the fly. We leave
this possibility for future work. We discuss the advantages
of the ASAP design compared to the commonly used systolic
array based design (e.g., [30], [31], [32], [33], [34]) in Section 5.

3.3.2 Design of a Delay Element

The overall architecture of the ASAP accelerator is shown
in Fig. 4. Fig. 6 shows the design of a single DE. A DE uti-
lizes sequential logic in the form of a shift-register to add a

BANERJEE ET AL.: ASAP: ACCELERATED SHORT-READ ALIGNMENT ON PROGRAMMABLE HARDWARE 337

Match Mismatch

Penalty Penalty ~ Readi] == Ref[]] Deletion Insertion | o€k Gating Delay
Penalty Pse |° Element
Input Input Input enalty
from from from — .
(i-1,j-1) (i,j-1) (-1 nput from (i,j-1)
- - o Ipput from (i-1,j-1)
1 ! | | | 1 Delay
Ihput from (i1,)
o1 [ey [e]d (] | S
- -- - iq[H
3
MUX MUX MUX

U
B [

M—D‘ Output
from (ij)

Fig. 6. Design of a single delay element D in ASAP. The DE is composed of three separate delay units corresponding to D, D, and Dy, in Fig. 4.

user-specified amount of delay. Each DE has 1) three input
signals (representing input wavefront) that connect it to its
preceding DEs in the grid, 2) two input signals representing
the nucleotides being compared by the element, and 3) three
input signals representing the §-parameters. Each DE has
one output signal representing the propagated wavefront
after the delay has been added. The match, mismatch, inser-
tion, and deletion delay penalties are defined in terms of
multiples of the clock period. When the input signal wave-
front first reaches an element, it is propagated through a
shift register to create delay. Based on the gap penalty speci-
fied for match/mismatch, insertion and deletion, the DE
propagates the input signals to the output. The output of
each flip-flop in the shift register is muxed to allow for the
selection of the bit corresponding to the gap-penalty of the
block (illustrated in Fig. 6). The ASAP array allows the user
to program (i.e., dynamically set at runtime) the values of
the select lines of these MUXs. This provides the ASAP array
with a degree of programmability, allowing it to be reused
across computations that merely require re-parameteriza-
tion of the gap-penalties. Changes in input-sizes, or the
dynamic range of the gap penalties (i.e., number of bits
required to represent the gap-penalties) requires a re-syn-
thesis and reconfiguration of the accelerator on the FPGA.
As described in the motivating example for the ASAP
accelerator given in Fig. 5, the power of the ASAP accelera-
tor is that it can explore a large portion of the search space
of possible mappings between the query string and the ref-
erence within a clock cycle by setting §(Match) = 0. This
improvement in computational speed can be coupled with
a decrease in energy consumed by the accelerator by clock-
gating the DE (illustrated in Fig. 6) with the input signal.
The approach mentioned above has problems with long
chains of combinational logic and may lead to timing viola-
tions on large lattices of DEs. To get around this problem,
larger lattices of delay elements are composed by using the

OOOIOO0ITEICTE Naerie

I o
e | LI L LRI LI
I o o
I o
Delay Element Qggggg’gggﬂ
D I o

:”: LIl | :”]_ L jmchronous FF

QQD:”QQDI:”QQD to buffer output

Fig. 7. The architecture of the ASAP accelerator in terms of tiles whose
output is buffered by clock synchronous flip-flops (FFs).

smaller tiles of ASAP accelerators (for which the timing vio-
lations do not occur) and by adding a sets of clock-triggered
flip-flops between the tiles to break the chains of combina-
tional logic (see Fig. 7). Further, the diagonal tile crossing
(i.e., the flip-flops at the lower right corner of the tile) corre-
sponds to a 2 cycle delay (i.e., two flip-flops in serial).
Although the additions of the tile flip-flops changes the
results of ASAP from what was described in the last section,
the overall total-ordering is preserved, as this constitutes a
constant addition of delay to all outputs of the ASAP accel-
erator. Each tile is synthesized, optimized, and placed-and-
routed separately by defining separate design partitions.
This approach prevents the compiler from performing opti-
mizations across partition boundaries [35]. This approach
also ensures that unintended wiring delays do not creep
into the netlist of the ASAP accelerator.

The counter that decodes the delayed signal output from
the ASAP lattice (shown in Fig. 4) is designed based on a
computation of the number of clock cycles for the signal
wavefront to emerge from the lattice. The bit-width of this
counter, N,, is calculated from the sizes of the input strings
and the user-input gap-penalty parameters, and is given by

- (81l +plg,
N, = ’71082 InlIl{ Sulg +8p(lr —lg) }—‘ .

This expression is an upper bound (albeit a loose one) on
the maximum delay caused by a DE.

3.3.3 Scalability Issues in the ASAP Accelerator

There are challenges involved in scaling the ASAP accelera-
tor to large input sizes and large gap penalties. Those chal-
lenges can be addressed as follows:

1) Large Input Sizes. The size of the reference and read
strings being compared in the ASAP accelerator
plays a role in the size of the lattice defined by the
ASAP accelerator. The size of the accelerator grows
as O(lg x s) with the input size.” The tile size param-
eter defines a tunable knob to control the critical
combinational path in the circuit. It can be used to
trade off performance against meeting timing clo-
sure as the size of the accelerator grows to a signifi-
cant portion of the resources available on the FPGA.
Section 4 demonstrates our scaling experiments with
the accelerator.

7. This corresponds to quadratic growth in size of the ASAP lattice
(i.e., O(n®)) whenlg = s = n.

338
N
Max tolerable oo
edit distance :g@q
icati =1 Eliminated Blocks
(appllc‘atnon N\ ()
specific) CNOIOOO
[mm]
o o o
(||| (1o o |
o
— - aad S;]DDDD[\
(N N RPN
DoOIoONIooa) s
OOomNOOn - <5
(] 0

Fig. 8. Elimination of unused tiles from the ASAP lattice in the case of LV
variant of the LD algorithm.

2) Large Gap Penalties. A large dynamic range of the
gap-penalty values negatively affects the ASAP
accelerator, as it increases the size of the shift-regis-
ters and multiplexers in the DE (see Fig. 6). We work
around this problem by using BRAM-based shift
registers, which can be ~ 10° bits long (without inter-
mediate routing). In general, we do not expect large
gap penalties to be a problem for genomic sequences
(as opposed to protein sequences), for which the
dynamic range in gap-penalties is low.

3) Potentially Unused Tiles. Fig. 5 shows that a large part
of the ASAP array is not involved in computation
when the input strings have low LD (which is indeed
the case in the short read alignment problem). There
are several ways to tackle the problem of unused
tiles across the three variants of the LD computation
(i.e., SW, NW, and LD). As mentioned earlier, in
the case of SW or NW, clock-gating individual delay
elements ensures minimal power consumption.
Further, in the LV case, as a the worst case LD is
specified, we can use this information at compile (in
this case synthesis) time to eliminate part of the
ASAP lattice that will not contribute to an answer.
Fig. 8 illustrates such an elimination on an 18 x 18
lattice with a maximum of 6 insertions or deletions
permitted, resulting in a 56%(= 20/36 x 100) reduc-
tion in area.

3.3.4 Issues with Timing Closure

Computing with propagation delays is disadvantaged by
the fact that thermal dissipation and temperature varia-
tions at different parts of the FPGA chip to change the
physical time associated with unit delay. However, the
ASAP accelerator is resilient to these thermal changes up
to the maximum operating temperature of the FPGA (i.e,,
timing violations do not occur). Further, only delays that
are multiples of the clock period can affect the computed
LD. The tile length serves as a tunable knob between run-
time performance and worst case negative slack for the cir-
cuit. This slack is enforced by the compiler (e.g., Xilinx
Vivado, Altera Quartus) as only values of tile length for
which timing closure can be met can be used in the FPGA.
Furthermore, the counters in Fig. 4 that measure edit dis-
tance are synchronously triggered by the clock, thereby
ensuring that all delay-based LDs are computed as multi-
ples of the clock cycle.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.3, MARCH 2019

3.3.5 Encoding Input Sequences

The implementation of the ASAP accelerator assumed use
for genomic data, implying that the entire alphabet can be
represented in two bits (i.e., A, C, G and T). The bases N, -, R,
Y, K, M, S, and W (which represent an unknown or ambigu-
ous nucleotide) are removed from the alphabet. Our design
could potentially be extended to larger alphabets, e.g., for
protein sequence alignment.

3.4 Host-to-Accelerator Communication via CAPI
Communication between the host and accelerator is imple-
mented using the CAPI interface [14], [15] provided on an
IBM Power8 CPU. The CAPI interface gives an accelerator
(a PCle-attached FPGA) coherent access to the virtual address
space of a process running on the host CPU, with all address
translations from virtual to physical memory done in the
CPU. Fig. 9 shows the interface and mechanism by which
the host CPU communicates with the ASAP accelerator. The
Power8 is a superscalar symmetric multiprocessor, that has
12 cores per chip, with up to 8 hardware threads per core. All
cores have access to shared memory through a PowerBus
(shared memory bus). The Coherent Attached Processor
Proxy (CAPP) enables the interface (CAPI) by maintaining a
directory of cache lines held by the processor and provid-
ing coherency by snooping the PowerBus on behalf of the
accelerator (or any other PCle device). The PCle host bridge
provides connectivity between the CAPP and the Power
Service Layer (PSL) on the FPGA over the PCle bus. The
PSL on the accelerator acts as a proxy for the CAPI protocol
on the FPGA, communicating between the CAPP and the
Accelerator Functional Unit (AFU). The AFU contains the
custom acceleration logic and reads/writes coherent data
across the PCle. The PSL unit runs at the same speed as the
PCle bus (250 MHz). It contains a memory management unit
(MMU) to handle address translation on the accelerator side
on its copy of the processor’s cache directory.

The AFU interacts with the PSL to provide word-level
read and write commands. If these requests are made to
cache lines (which are 1,024 bits long) in a shared or exclu-
sive state on the device, they are served locally. Otherwise
the PSL interacts with the CAPP over the PCle bus to
attempt virtual to physical address translation, loading of
the cache line from main memory (if it is already not present
in the processor’s cache), moving (or copying of) the cache
line to the PSL, and changing the coherence of the cache line
in the processor’s directory [14], [36]. We use the AFU in
dedicated mode, meaning only one MMU context is sup-
ported by the accelerator. That is, only one user-space pro-
cess can use the accelerator at one time.

Fig. 9 shows the configuration of the interface to the PSL
for an ASAP accelerator that computes on two 64-bp strings,
with each nucleotide encoded by two bits. Hence the accelera-
tor takes 256-bit inputs (64bp x 2 bits/bp x 2) and produces a
propagation delay measurement encoded in 32 bits (to keep
with the signed integer implementation in short-read aligner),
which is the number of clock cycles for the signal to emerge
from the ASAP accelerator (depending on whether the SW or
NW algorithm is used). There is an internal 32 kB cache,
which has a 1,024-bit input port connected to the PSL, and a
1,024-bit output port that is connected to the input of the
ASAP accelerator. This cache is configured in a modified

BANERJEE ET AL.: ASAP: ACCELERATED SHORT-READ ALIGNMENT ON PROGRAMMABLE HARDWARE

339

Internal Input Cache

IBM POWERS

POWER

(PSL)

IBM Supplied

Service Layer |

(32 KB) . ASAP Lattices

Interface

Y

'
[
Buffer '
.
[

YVv¢Y

Inputs

MMIO, Command,
Control, Response

—

Interface

'
'
'
'
'
'
'
—>| Control Unit |« »> : !
'
'
'
'
'
'
'

Internal Output Cache
(128 B)

Crossbar :

Interface . en
——
' one :
<>
[1 >
’ :
< ' < :
e [y <D
Buffer L Output i
'
[
[

Accelerator Function Unit (AFU)

Fig. 9. The design of the interface between the host Power8 processor and the FPGA running the ASAP accelerator using the CAPI interface. The
diagram assumes an ASAP accelerator that computes on input strings that are 64 nucleotides long and encoded as 2 bits per nucleotide.

FIFO configuration; each entry in the FIFO contains multiple
input cases (in this case, four). A 4 x 1 MUX controlled by the
AFU control unit is responsible for producing 256 bits at a
time from the 1,024-bit input. The AFU packs the 32 bit out-
puts from the ASAP array into 1,024 bit cache-lines before
writing them back to the address space of the host over DMA.
The AFU uses the work element descriptor (WED; [14]) to
communicate the pointer to the input and output, as well as
the progress of the accelerator.

4 EVALUATION AND DISCUSSION

Experimental Setup. The ASAP accelerator is implemented in
Chisel [37] and can potentially be compiled across FPGAs by
Xilinx and Altera. The host-accelerator interface (which uti-
lizes IBM CAPI) is implemented in VHDL and is specific to
an IBM Power8 S824L system with an Alpha-Data ADM-
PCIE-7V3 board (that uses a Xilinx Virtex 7 XC7VX690T
FPGA) clocked at 250 MHz. All measurements (baseline CPU
as well as FPGA-based) were done on this machine. Fig. 10
illustrates the layout of four ASAP lattices and the CAPI
based interface on the Virtex 7 FPGA mentioned above.

Input Data & Validation. All inputs for the experiments
presented in this section are derived from the human refer-
ence genome hg38 by simulating [28] 100 million reads of
appropriate length. The read simulation introduced random
mutations and simulated sequencing-error models from an
[Nlumina HiSeq 2,500 with a 0.1 percent sequencing error
rate. We verified the correctness of our implementation

ASAP Core 3 ASAP Core 2 ASAP Core | Crossbar

ASAP Core 0

CAPI

Fig. 10. Layout of the accelerator on the Xilinx Virtex 7 XC7VX690T FPGA.
The design implemented above has 4 instances of the ASAP accelerator
and the IBM CAPI interface for host-accelerator communications.

through comparison with 1) answers generated from the
software tools (i.e., BWA [8] or SNAP [9]); 2) the ground
truth values generated by the simulator.

The remainder of this section is organized as follows.
In Section 4.1 we discuss microbenchmark performance (in
terms of runtime, communication bottlenecks, FPGA resource
utilization, and energy consumption) of various configura-
tions of the ASAP accelerator. Then in Section 4.2 we discuss
the end-to-end performance of integrating the ASAP accelera-
tor into the SNAP [9] and BWA-MEM [8] aligners.

4.1 Microbenchmark Performance
4.1.1 Performance of the Accelerator

In this section we compare the performance of ASAP-
accelerated LD computation against their respective CPU
baselines. Here we do not account for time taken to perform
disk IO, serialization/de-serialization (i.e., parsing inputs,
writing in-memory data structures to disk), and reference
lookups (see Section 2) that are required as a part of the
end-to-end computation. These other factors are described
in Section 4.2.

SW Configuration. The ASAP accelerator is approximately
200x faster than the baseline C implementation of the SW
algorithm for computing LD that is optimized to use single
instruction multiple data (SIMD; e.g., Intel AVX instruc-
tions) and simultaneous multi-threading (SMT; e.g., Intel
Hyperthreads) based multi-threading [38]. The baseline
implementation exploits inter-task parallelism (i.e., data
parallelism) by processing multiple reads across threads.
Table 3 describes the comparison of the performance of a
single lattice ASAP accelerator. Having multiple cores on

TABLE 3
Comparison of Median Run-Time for LD Computation on CPU
and ASAP (SW & LV Configurations)

SW Configuration LV Configuration
Read Size CPU ASAP Speedup CPU ASAP Speedup
64 1,890 us 10.3 us 183x 238 us 6.8 us 34.8x
128 2,083 us 10.7 us 194x 497 us 10 us 49.7x
192* 3326 us 16.4 us 203x 729 us 16.3 us 44.7x
256* 3906 us 172 us 219x 944 us 172 us 54.9x
320* 4,484 us 189 us 237x 1,190 us 18.8 us 63.3x

Rows marked with “*” are simulated results. The LV configuration uses
k = 1/4xRead Size.

340
104 grescccsccccccccccccccccs gecccccccssssssssssccccsse
- 25th-75t percentile =23
a Systolic =—@— :
S oo ASAP (Simulated) —@— :
= 10 ASAP (Hardware) —8— - gF® ""* ‘
S - :
v .
O H
L_O) 102 fgrecccccccccccco s WMecctocccce- @ Pecccoccoce H
> :
g H
101 farecccccc g cccccccccgecccccccccccccccccccscne N
2 :
© .
— H
100 AT |
10t 102 103
String Length
a) Input string length (Tile length = 16).
P g leng g
400 gemessse STTTRTR eoeees seeeees eoeees veeoees vececee
. . 25th.75t percentile =3 :
i ecses tecccoe Best (Simulated) .t
$ 350 7 M Worst (Simulated) H
—_ . Median (Simulated) .
(>).. 300 fmeccee Median (Hardware) LXH
LI) - H H H
3 250
(8}
° 200
Q
> 150
g
o 100
©
@ 50
0
0 5 10 15 20 25 30 35
Tile Size

(b) Tile length (Input length = 128).

Fig. 11. Latency of the ASAP-SW accelerator as a function of the input
string length. The shaded area in both the graphs show 25th and 75th
percentile measurement from simulation.

the CPU or multiple ASAP lattices on the FPGA does not
change this comparison, as each core/lattice is expected to
be computing a separate unrelated instance of the LD com-
putation. The performance of ASAP depends not only on
the size of the inputs, but on the inputs themselves (i.e.,
more mismatched inputs mean a higher computation time).
Hence we present all ASAP measurements as the median
across all the randomly generated reads. We observe that a
single ASAP lattice shows ~ 200x speedup relative to a sin-
gle CPU core (containing 8 SMT threads and SIMD units),
with potential improvements in performance with growing
input size (see Table 3). Overall, a Power8 CPU chip con-
tains six such cores, whereas our implementation of ASAP
can scale to four lattices (see Fig. 10). Hence a chip-to-chip
comparison yields a 133 x improvement in performance.
Fig. 11a illustrates the latency of the accelerator (without
the overhead of communication between the host and
device) in computing LD (in the SW sense) for a single read-
reference pair. In contrast to traditional systolic-array-based
accelerators, ASAP needs to update only the cells (DEs) that
can contribute to the LD computation (i.e., corresponding to
the colored cells in Fig. 5). Hence, throughput of the ASAP
accelerator can be computed in two ways: we can compute

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.3, MARCH 2019

it either by considering the total number of cells in the LD
lattice, or by considering only the cells updated by ASAP.
The first method which we refer to as effective-GCUP/s is
directly comparable to traditional techniques as they too
consider updating all elements in the LD lattice. In terms of
the first method, ASAP achieves an average of 609.6
GCUP/s (10° cell updates per second) for 128-bp reads; the
second method, it achieves an average of 204.8 GCUP/s.
This implies that in the median case, ASAP is approxi-
mately 5x better than an equivalent systolic-array-based
FPGA implementations (e.g., 122 GCUP/s were physically
achieved on an FPGA in [39]%). Fig. 11b shows the effect of
changing tile-length on the latency of the accelerator. It is
evident that there are diminishing returns for increasing the
tile length, with almost no improvement beyond tile size 16.

LV Configuration. Table 3 shows a comparison of the ASAP
accelerator running in the LV configuration to the C++-based
LV implementation in the SNAP alignment software [9]
(which is multi-threaded and uses SIMD instructions). Over-
all, LV has a lower computational complexity than SW (i.e.,
O(nk) compared to O(n?) for SW). This difference in perfor-
mance is apparent in the baseline CPU implementations
shown in Table 3. Further, we observe that ASAP-accelerated
LV is 40 — 60x faster than the baseline for representative
input sizes. This corresponds to a ~ 4 x better performance of
the LV configuration compared to the SW configuration of
the ASAP accelerator. Note that this difference is input-
dependent, with the LV variant performing significantly bet-
ter (as the maximum delay in the ASAP LV lattice is upper-
bounded by k) for string pairs that have larger degrees of
mismatches.

Input-Dependence. Another point to note about Fig. 11 is
that ASAP represents a method to trade-off worst-case per-
formance and average-case performance. The approxima-
tions that we present may be slower than the baseline
performance for the worst-case (i.e., when read mismatches
reference completely). However, we see that for representa-
tive data sets, the median performance as well as the 75th
percentile performance are significantly better than the base-
line. For the short read alignment problem, we observe that
matches occur more frequently than insertions, deletions or
mismatches. The ASAP accelerator can also be applied to
other cases where insertions or deletions are more frequent
by dealing with those cases in combinational logic.

4.1.2 Performance of the CAPI Interface

The ASAP accelerator benefits from the use of the CAPI
interface, because CAPI 1) significantly simplifies, and 2) sig-
nificantly streamlines the process of initializing and com-
municating with the accelerator. We benefit from using a
unified virtual memory space across the PCle bus with hard-
ware-supported address translation, compared with the tra-
ditional model, which requires significant hand-holding by
an OS. For example, a typical device driver would execute
approximately 20k instructions, PCle bounce-buffering, and
page-pinning to perform communication between host and
accelerator. We performed measurements on the CAPI inter-
face using a loopback accelerator [36] (i.e., an accelerator

8. The comparison to [39] is made based on numbers presented in
their paper, and has not been re-implemented by us.

BANERJEE ET AL.: ASAP: ACCELERATED SHORT-READ ALIGNMENT ON PROGRAMMABLE HARDWARE 341

TABLE 4
Measured CAPI-Based Memory Access Performance
Interface Payload (B) Type Measurement
PCle 128 Mean read /write latency 0.87 s
CAPI 128 Mean read /write latency 126 ns
CAPI 128 Mean read /write bandwidth ~ 3.88 GB/s

Latency measurements includes round-trip latency to shared memory as seen
from the accelerator.

Tn\ 4.5 : : H :

E 4 = PCle DMA * B R S
G 3.3 = CAP| —e— ==X
+ 2.5

a 2

c 1.5

[@)] 1

2 0.5

e 0 PETETY T
< 3 4 5 6 7 8
= 10 10 10 10 10 10

Payload (bits)

(a) Mean observed bandwidth.

7

/.

CDF
coocoooo000
oRNwbhUIONDOR

0 5 10 15 20 25 30 35 40 45
Fraction of cycles stalled (x 1073)

(b) Fraction of cycles stalled due to unavailability of data.

Fig. 12. Mean host-accelerator bandwidth over the CAPI interface and
its effect on the performance of the ASAP accelerator.

reads a cache-line and writes it back to a different location).
We observed that (see Table 4 and Fig. 12a) the CAPI
interface can perform random reads and writes with 1) sub-
ws latency, and 2) 4 GB/s bandwidth which are both close
to the measured native PCle latency/bandwidth for the
FPGA board used in the evaluation. The one disadvantage
that we observe with the CAPI interface is that it allows an
AFU to use only 50 percent of the available peak-theoretical
PCle bandwidth. Our measurements of PCle goodput
(i.e., bandwidth for user data to and from the accelerator)
are similar to those from CAPI (see Fig. 12a).” Bandwidth is
currently not a limitation for the accelerator. Fig. 12b
shows the fraction of the runtime of the accelerator spent
in stall over the execution of a large number of reads.
However, moving to a larger FPGA that supports larger
ASAP lattices or multiple smaller ASAP lattices (executing
in parallel), or clocking the ASAP accelerator higher than
250 MHz will require larger bandwidth for the host-accelera-
tor interface.

9. We speculate that this limitation occurs because of non-optimal
interactions between the OS-modules (e.g., CAPI cache misses trigger
TLB/ERAT or page misses) and the PCle-endpoint ASIC (e.g., dealing
with out-of-order packet delivery) on the FPGA board. We leave the
optimization of such direct memory access (DMA) issues to future
work.

Utilization (%)

SR-SW
Number of PEs

SR-LV

(a) Scaling of FPGA resource utilization (accelerator size) with
increase in number of ASAP lattices.

Power (W)

2 4 2 4 |2 4
CMP SR-SW SR-LV
Number of PEs

(b) Power dissipation from the ASAP accelerator with increase in
number of ASAP lattices per chip.

Fig. 13. Comparison of on-chip resource utilization of the cMP and SR
implementations of the ASAP design. Each ASAP lattice is of size
128 x 128.

4.1.3 FPGA Resource Utilization

This section describes the overall on-chip resource utiliza-
tion to implement the CAPI interface and multiple ASAP
lattices on the FPGA. Fig. 13 illustrates this utilization with
the increasing number of lattices for two implementation
styles for the ASAP delay element. First, the comparator
based design that was presented in the original RaceLogic
paper [13] (referred to as CMP in the figure), and second, the
shift-register based design (presented in Section 3) that
has been optimized for FPGAs (referred to as SR-SW and
SR-LV in the figure). Fig. 13a demonstrates the significant
reduction (nearly 15 percent) in number of logic elements
(i.e., slice resources) required to implement SR compared to
CMP. This further translates to a ~ 1.9x reduction in power
consumed by the SR design (shown in Fig. 13b). In the
SW configuration, the proposed design is nearly 18.8x
more power efficient than the IBM Power8 CPU (~ 10.1 W
compared to 190 W). This implies an overall 3,760x
(=200 x 18.8; based on Section 4.1.1) improvement over the
CPU in performance/Watt terms. The LV configuration of
the accelerator utilizes 19 percent less FPGA resources and
consumes 10 percent less power than the SW configuration.
The diminished returns from the LV optimizations are a
result of the IBM PSL module’s occupying ~ 30% of the

342

'
........

Area Utilized (FF)

.
. .

....................... .
.

ASAP-SW —O— :

.
.
.
.
.
.
.

e
.
.
.
.
.
.
.
.

cegecce
.
.
.
.
.
.
.
.
°?

10" fpeccccee Foceeceee 2- s ASAP-LV _._.i
: : : ic =0O— :
. ; ; ; Systolic ;
10
0 100 200 300 400 500 600

String Length

Fig. 14. Scaling of FPGA resource utilization (accelerator size) with
increase in input string size for the ASAP lattice in SW configuration.

FPGA area, thereby dominating the relative decrease in
resource utilization and power.

Note that the power consumption for the chip is calcu-
lated from the synthesis tool (i.e., Xilinx Vivado) and repre-
sents worst-case power consumed by the accelerator.
However, the real power consumption is input-dependent
and lower than that mentioned above, as clock-gating on
off-diagonal delay elements will be enabled differently
based on inputs (recall Fig. 5). We computed this difference
in power consumption using the 5824L’s on-board power
meters on the Flexible Service Processor (FSP).'"” The FSP
measurements report power consumption of the entire com-
puter system averaged over 30 s intervals. To calculate the
power consumption of the ASAP accelerator, we measured
the difference in power consumed by the system when exe-
cuting the 4-lattice instance of the ASAP accelerator shown
in Fig. 10, and when idling. We observed an average differ-
ence (i.e., the ASAP accelerator’s average power consump-
tion) over 100 executions (of the entire benchmark dataset)
of 6.9 W £ 2.8 W (error is expressed as standard deviation)
for the SW configuration and 6.8 W + 1.6 W for the LV con-
figuration. These measurements support our claim that the
actual power consumption of ASAP is lower than that
reported by the synthesis tool.

Area-Based Scaling. The resource utilization of the ASAP
accelerator scales quadratically with the lengths of the
sequences being compared. For example, Fig. 14 shows the
number of flip-flops (including those used in shift registers)
used by the ASAP accelerator with increasing string length,
based on a 16x16 square tile size.'' In comparison, an
FPGA-based systolic array implementation of the LD com-
putation [30] (described in Section 5) scales linearly (.e.,
2N +1, where N is the length of the strings being com-
pared). It is apparent that for larger sequences, ASAP
quickly exhausts the FPGA resources.

However, ASAP is able to compute LD for short-read
sequences (e.g., the 100-150 bp sequences that are typically

10. The FSP is an auxiliary processor on the S824L that is an always-
on management processor enabling out-of-band management of the
server.

11. This example does not include flip-flops required for the CAPI
interface.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.3, MARCH 2019

obtained from an Illumina HiSeq 2500) which are popularly
used in resequencing experiments. In addition, we leave
approximately 20 percent of the area of the FPGA free, to
allow the CAD tools to place-and-route the circuit without
timing violations due to wiring delays.'” As a result, we
are able to fit a maximum 128 bp read accelerator on
our FPGA. Fitting larger blocks leads to timing violations
because of delays introduced by the on-chip interconnect.
Given the industry trend towards FPGAs with larger pro-
grammable area, in the future it should be possible to
extend ASAP to read sizes that are potentially thousands
of nucleotides long.

Handling Inputs Larger Than Lattice Size. Currently, the
ASAP accelerator can be used to compute LD for larger
strings by adding a special software-based control algo-
rithm in software to compute LD between sub-strings of the
original queries, and combine them to compute the result.
The algorithm works by measuring (and storing) the time at
which the signal wavefront leaves the extremal DEs of the
ASAP lattice, and reintroducing this signal wavefront in the
same lattice after updating the nucleotides to be another dis-
joint substring of the queries. We leave the hardware imple-
mentation of this approach for future work.

NW Configuration. Note that the NW and SW configura-
tions of the ASAP accelerator are identical in terms of per-
formance and FPGA-resource utilization. Section 3.1
describes how the NW and SW configurations differ in how
delay between the input and output are measured.

4.2 Integration Into End-to-End Alignment Software
In this section, we compare ASAP-accelerated versions of
end-to-end alignment software tools with their baseline
CPU versions. This comparison includes time taken for LD
computation as well as other auxiliary functions like, disk
IO, and marshaling and un-marshaling of data (from disk
and from accelerator). As a result, improvements in LD
computation provide diminishing returns (i.e., asymptotic
behavior similar to Amdahl’s law); we show that the current
ASAP represents a speedup that is very close to the asymp-
totic limits for this computation. We use two alignment
tools, SNAP [9] (which uses ASAP in the LV configuration)
and BWA-MEM [8] (which uses ASAP in the SW configura-
tion)."® These results are described below.

Host-Accelerator Communication. The baseline SNAP &
BWA aligners exploit parallelism in the alignment problem
by dividing the work of aligning a set of reads among all of
the 192 threads available on the system. We use the same
communication algorithm to dispatch LD computations to
the accelerator in both cases. Since our current implementa-
tion of ASAP allows for only one calling context on the
host-side, accelerator executions are dispatched by main-
taining a pool of memory shared among all threads to com-
municate with the accelerator. The procedure for each
thread communicating with the accelerator is as follows:
1) picks a read from the set it was assigned; 2) queries the

12. There is no simple analytical method to derive the optimal tile
size, sequence size and free area on the FPGA, as the synthesis tools are
a black box.

13. We used version 1.0 of the SNAP tool and version 0.7.17 for
BWA.

BANERJEE ET AL.: ASAP: ACCELERATED SHORT-READ ALIGNMENT ON PROGRAMMABLE HARDWARE 343

SNAP (Software) ——

i°*BWA-MEM (Software) —@— **

: ASAP-LV-SNAP —8— _,
——

Cumulative Probability

Time/Read (s/read)

Fig. 15. Performance comparison of the ASAP-accelerated SNAP and
BWA-MEM alignment tools (called ASAP-LV-SNAP and ASAP-SW-
BWA-MEM, respectively) with their baseline CPU versions (called SNAP
(Ssoftware) and BWA-MEM (Software), respectively).

reference index for candidate locations for the read; 3) con-
tends for a lock, then writes nucleotides for the read and the
candidate locations into shared memory; 4) at this point, the
accelerator reads from the shared memory and writes out
the results to another shared segment of memory; and
5) polls for results from the accelerator using a test and test-
and-set based locking protocol [40], then consumes the out-
put. This algorithm exemplifies CAPI’s benefit, as we can
make use of cache coherence between the CPUs and FPGA
to easily implement mutual exclusion.

The SNAP & BWA-MEM Aligners. Fig. 15 shows the distri-
bution of time taken per read by the baseline and the ASAP
accelerator for all LD computations. We see that there is a
large spread for total time spent in computing LD because
some reads map to more regions of the reference than others.
This variation is an artifact of both the nature of the human
genome and the read simulator’s practice of picking reads at
random from the genome. We observe that the SNAP aligner
is accelerated by 2x (i.e., 1%/ 99),,) and that the BWA-MEM
aligner is accelerated by 1.86x (i.e., 264"/, 4o1,,), respectively.
These results are representative of the mean time spent in
processing a single read. Fig. 15 shows the long-tailed behav-
ior of some of the input pairs in the datasets that are signifi-
cantly mismatched (for the accelerated implementations).
The long-tailed behavior of the CPU baselines stem from
non-determinism in the IO and thread scheduling subsys-
tems of the host. The LV upper-bound for maximum time
spent in computing LD ensures that the ASAP-accelerated
SNAP version (called ASAP-LV-SNAP in Fig. 15) has a signif-
icantly shorter tail than the SW configuration in BWA (called
ASAP-SW-BWA-MEM in Fig. 15).

The performance measurements presented above are
close to the Amdahl’s law limit of the SNAP algorithm
based on our measurements presented in Table 2. In the
case of the BWA-MEM aligner, we observe that we achieve
a lower absolute improvement, that is expected, as the
asymptotic limit for improvement is lower. The BWA-MEM
algorithm performs larger amounts of non-LD computation
compared to SNAP, i.e., Burrows-Wheeler transform based
index lookup while SNAP computes hashes for a hash table
lookup. Both baselines are measured with huge-page

support turned on in the host’s Linux-kernel to negate
effects of ERAT-misses (TLB-misses in Intel parlance).

Gap Penalty Models. A subtlety to be noted in the compari-
son presented above is that BWA-MEM'’s default behavior
uses affine gap-penalties in addition to the SW local-align-
ment algorithm (instead of the constant gap-penalties used by
ASAP). Hence we have to use the tool’s command line argu-
ments to set the gap-penalty parameters such that they rep-
licate a constant gap-penalty model (i.e., set the requisite
parameters to 0). We discuss handling of affine gap-penal-
ties in ASAP as part of our future work in Section 6.

5 RELATED WORK

The sequence alignment problem has been addressed by an
extensive body of work that looks at algorithms and their
high-performant implementations on CPUs and on accelera-
tors like GPUs and FPGAs. This section focuses on compar-
ing ASAP to other implementations of the LD computations.
Refer to Section 2 for a discussion of algorithms.

On CPUs and GPUs. The LD computation and sequence-
alignment problem has been studied on SIMD and MIMD
processors that exploit parallelism in the problem at two
levels. Inter-task parallelism [41] (using multiple cores to
independently compute alignments of different short
reads), and intra-task parallelism [42], [43] (using SIMD
instructions and efficient use of the memory hierarchy to
effectively compute (1)). Most of the popular SW or NW
implementations exploit the use of both of these techniques.
These techniques have also been applied to GPUs [44], [45],
[46]. One such example is NVIDIA’s NVBIO [47] library
and the accompanying set of tools nvBWT, nvFM-server.
These look at accelerating the construction and look-up of
data structures that index the reference genome. The major
disadvantages of this approach is the large power consump-
tion of these processors, and their restrictive lock-step paral-
lelism based programming models.

On FPGAs and ASICs. Custom hardware acceleration of
the problem on FPGAs and ASICs has also been widely
studied. Most of the popular hardware architectures are
based on systolic arrays [30], [31], [32], [33], [34]. These
architectures like the SIMD and MIMD approaches, are lim-
ited by the amount of parallelism they can exploit. It has
been shown in [48], that exploiting deeper pipelines with
much larger inter-task parallelism can potentially enable
more efficient use of FPGAs. We may be able to use this
optimization to futher increase the throughput of the accel-
erator, particularly on larger FPGAs that can sustain larger
off-chip bandwidth. Kaplan et al. [49] present an ASIC
design for a Processing-in-Memory accelerator for the SW
algorithm that leverages resistive content-addressable
memory to compute matches/mismatches of nucleotides.
ASAP represents a significant improvement over [49] in
throughput/Watt terms, i.e., ASAP achieves 61 GCUP/s/W
(=009 /10.1) compared to their 53 GCUP/s/W. Turakhia
et al. [50] present an accelerator to perform long-read
assembly, one step of which includes a SW-based alignment
(through a seed-and-extend approach). Alser et al. [51] pres-
ent an FPGA based accelerator to efficiently filter candidate
locations to calculate LD. This accelerator is targeted at
Line 6 of Algorithm 1, as opposed to ASAP which targets

344

Line 7, hence the accelerator can be used in addition to
ASAP to accelerate the end-to-end alignment process. More
recent work [52] has also shown the benefit of distributing
the compute intensive LD computation across multiple
accelerators (including CPUs, GPUs, FPGAs, Xeon Phis).
We observe that ASAP significantly outperforms such
multi-accelerator systems both in terms of performance and
performance per-Watt. The Host + 2x FPGA design pre-
sented in [52] only achieves a 441.6 GCUP/s performance at
1.51 GCUP/s/W. In comparison ASAP achieves 609.6 effec-
tive GCUP/s at 61 GCUP/s/W on a single FPGA."* Other
work, e.g., [53], [54], [55], has demonstrated the use of sys-
tolic-array-based designs to accelerate computations on
Pair-HMM models, where gap-penalties are replaced by
probability distributions. That may be a future direction for
the extension of the ASAP design.

ASAP’s design philosophy is most closely related to Mad-
havan et. al.’s RaceLogic [13] ASIC design, which also enco-
des LD computations as circuit delay. However, ASAP
builds on this basic model to further optimize the design by
using 1) approximation algorithms for the LD computation
which maintains the total ordering of LDs, and 2) accelerating
the most common computation (in this case the processing of
“matches”) in combinational circuitry thereby spending min-
imal runtime in its computation. This is demonstrated by the
fact that ASAP is ~ 50 x faster than a RaceLogic implementa-
tion. Further, the nature of the alignment problem and the
rapidly evolving sequencing technology (i.e., read lengths),
implies that fixed function ASICs are not favorable because
of the large monetary investment required and the inability
of the accelerator to adapt to new input sizes. ASAP circum-
vents these problems by using reconfigurable FPGAs. Of
course, an ASIC will almost always outperform an FPGA in
energy efficiency because of its customized layout. Hence
going forward, a design with a fixed function (i.e., ASIC-
based) IO interface (i.e., CAPI) with a configurable substrate
for ASAP accelerators might present an ideal trade-off.

Comparison to Systolic Arrays. Relative to the related work
described above, ASAP has some decided advantages:

1) The systolic array based approaches require each ele-
ment of the array to compute on as many bits as the
maximum LD computed. Our approach requires
only as many bits per delay element as the maximum
delay between inputs at that point in the lattice.

2) The earlier accelerators have to explore the entirety
of the lattice before computing the LD. We show that
the ASAP accelerator explores only the portions of
the lattice that is reachable before the final result is
produced. This represents a significant savings in
run time and energy expended for computation.

3) The ASAP accelerator can explore multiple elements
in the lattice in under one clock cycle by setting
8(Match) = 0. Systolic array based architectures can-
not perform this optimization, as this creates large
combinational chains which make timing closure dif-
ficult to obtain.

14. The comparison is made across an equivalent generation
of Altera and Xilinx FPGAs, using effective-GCUP/s (described in
Section 4.1.1).

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.3, MARCH 2019

On Neuromorphic Computers. Neuromorphic computing is
modeled on biological neurons that communicate and com-
pute using temporal-encoding of information as voltage
pulses, or spikes. This is similar in principle to the delay
based computation outlined in this paper, however it is still
an open research question [56], [57].

On Sequencing Technologies. Recall that the alignment
computation (shown in Section 2) is composed of the
LD computation as well heuristics to identify candidate ref-
erence regions. The use of novel sequencing technologies
(e.g., PacBio, Nanopore which are based on single-molecule
sequencing), introduces new sequencing error regimes
which will change the heuristic components of the align-
ment computation, but not the LD. As ASAP targets the
LD computation, we believe it can be applied to data gen-
erated from these long-read sequencing machines. Turakhia
et al. [50] present one such accelerator for long reads.
Their accelerator targets the acceleration of the entirety of
Algorithm 1 and uses LD computation as a submodule.
ASAP can replace that module and provide significant
performance and energy benefits as shown in this paper.

6 CONCLUSION AND FUTURE WORK

This paper proposed ASAP, an accelerator for rapid compu-
tation of LD, in the context of the short-read alignment
problem. ASAP builds upon the idea that the LD between
strings can be approximated for the short-read alignment
problem by encoding gap penalties in propagation delays
of circuit elements. We show that by effectively setting these
delays, it is possible to accelerate performance significantly,
and at the same time ensure that the accuracy of alignment
is maintained. ASAP significantly outperforms (both in per-
formance and performance-per-Watt terms) purely CPU/
GPU-based as well as sytolic array-based accelerator imple-
mentations of LD computation in the all the SW, LV and
NW configurations.

The ASAP accelerator, and the approach (based on heu-
ristic approximations) presented in this paper, can also be
adapted to a variety of other problems in which a total
ordering of LDs is computed. For example, in signal proc-
essing, where different instances of a signal have to be
aligned to compute similarity [3]; in text retrieval, where
misspelled words have to be accounted for in a dictio-
nary [16]; and in virus- and intrusion-detection, where
signatures have to be aligned to a baseline [17].

Future Work. Our future work will primarily look to
extend ASAP to handle more complex gap-penalty models.
This paper describes the use of constant gap penalties (i.e., a
fixed score is assigned to every gap), which are commonly
used in DNA alignment (e.g., in NCBI-BLASTN, or WU-
BLASTN [20]). We can extend ASAP to handle linear, affine,
and convex gap penalties by letting each DE track the prop-
agation of the signal wavefront in the portion of the lattice
before it. We can do so by dynamically resizing the length
of the shift registers on off-diagonal DEs depending on their
positions (i.e., 4, j coordinates). Further, re-using the lattice
for input strings larger than the lattice dimensions would
involve dynamic reconfiguration of the FPGA to allow for
different taps in the shift registers. Further, ASAP can also
be extended for use in the alignment of proteins by using

BANERJEE ET AL.: ASAP: ACCELERATED SHORT-READ ALIGNMENT ON PROGRAMMABLE HARDWARE

substitution matrices, like BLOSUM [5], which assign
unique scores to each pair of residues.

ACKNOWLEDGMENTS

This research was supported by several grants: in part by the
US National Science Foundation (NSF) under Grant Nos.
CNS 13-37732 and CNS 16-24790; in part by the Blue Waters
sustained-petascale computing project supported by the US
National Science Foundation (awards OCI-0725070 and ACI-
1238993) and the state of Illinois; and in part by IBM Faculty
Awards. We thank Zachary Stephens, Jenny Applequist and
Kathleen Atchley for their help in preparing the manuscript.

REFERENCES

[1]

[2]

(3]

[4]
[5]

(6]

(7]
[8]

]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai,
M. J. Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson,
“Big data: Astronomical or genomical?” PLoS Biol., vol. 13, no. 7,
Jul. 2015, Art. no. e1002195.

Y. S. Shao and D. Brooks, “Research infrastructures for hardware
accelerators,” Synthesis Lectures Comput. Archit., vol. 10, no. 4,
pp- 1-99, 2015.

V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics Doklady, vol. 10, p. 707,
Feb. 1966, http:/ /adsabs.harvard.edu/abs/1966SPhD...10..707L
G. Navarro, “A guided tour to approximate string matching,”
ACM Comput. Surveys, vol. 33, no. 1, pp. 31-88, Mar. 2001.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” |. Mol. Biol., vol. 215, no. 3,
pp- 403-410, Oct. 1990.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short DNA sequences to the
human genome,” Genome Biol., vol. 10, no. 3, 2009, Art. no. R25.

B. Langmead and S. Salzberg, “Fast gapped-read alignment with
Bowtie 2,” Nature Methods, vol. 9, pp. 357-359, Mar. 2012.

H. Li and R. Durbin, “Fast and accurate long-read alignment with
burrows-wheeler transform,” Bioinf., vol. 26, no. 5, pp. 589-595,
Jan. 2010.

M. Zaharia, W.]. Bolosky, K. Curtis, A. Fox, D. Patterson,
S. Shenker, L. Stoica, R. M. Karp, and T. Sittler, “Faster and more
accurate sequence alignment with SNAP,” arXiv:1111.5572, 2011,
https:/ /arxiv.org/abs/1111.5572

S. S. Banerjee, A. P. Athreya, L. S. Mainzer, C. V. Jongeneel,
W.-M. Hwu, Z. T. Kalbarczyk, and R. K. Iyer, “Efficient and scal-
able workflows for genomic analyses,” in Proc. ACM Int. Workshop
Data-Intensive Distrib. Comput., 2016, pp. 27-36.

T. C. Glenn, “Field guide to next-generation DNA sequencers,”
Mol. Ecology Resources, vol. 11, no. 5, pp. 759-769, May 2011.

M. G. Ross, C. Russ, M. Costello, A. Hollinger, N. J. Lennon,
R. Hegarty, C. Nusbaum, and D. B. Jaffe, “Characterizing and
measuring bias in sequence data,” Genome Biol., vol. 14, no. 5,
2013, Art. no. R51.

A. Madhavan, T. Sherwood, and D. Strukov, “Race logic: A hard-
ware acceleration for dynamic programming algorithms,”
SIGARCH Comput. Archit. News, vol. 42, no. 3, pp. 517-528, Jun. 2014.
I. C. Systems and T. Group. Coherent accelerator processor inter-
face: User's manual. 2015. [Online]. Available: http://www.
nallatech.com/wp-content/uploads/IBM_CAPI Users Guide 1-
2.pdf

J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel, “CAPI: A
coherent accelerator processor interface,” IBM]. Res. Develop.,
vol. 59, no. 1, pp. 7:1-7:7, Jan. 2015.

R. Baeza-Yates and B. Ribeiro-Neto, et al., “Modern information
retrieval,” vol. 463, 1999, http://people.ischool.berkeley.edu/
~hearst/irbook/

S. Kumar and E. H. Spafford, “A pattern matching model for mis-
use intrusion detection,” in Proc. 17th Nat. Comput. Secur. Conf.,
1994, pp. 11-21.

T. Smith and M. Waterman, “Identification of common molecular
subsequences,” |. Mol. Biol., vol. 147, no. 1, pp. 195-197, 1981.

S. B. Needleman and C. D. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of two
proteins,” J. Mol. Biol., vol. 48, no. 3, pp. 443-453, Mar. 1970.

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]

[40]

[41]

[42]

[43]

345

W.-K. Sung, Algorithms in Bioinformatics: A Practical Introduction
(Chapman & Hall|CRC Mathematical and Computational Biology).
London, U.K.: Chapman and Hall/CRC, 2009.

S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices
from protein blocks,” Proc. Nat. Academy Sci. United States America,
vol. 89, no. 22, pp. 10 915-10 919, Nov. 1992.

C. Wang, R-X. Yan, X-F. Wang, J-N. Si, and Z. Zhang,
“Comparison of linear gap penalties and profile-based variable
gap penalties in profile-profile alignments,” Comput. Biol. Chemis-
try, vol. 35, no. 5, pp. 308-318, Oct. 2011.

M. Burrows and D.]. Wheeler, “A block-sorting lossless data com-
pression algorithm,” 1994, http:// citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.121.6177

E. Ukkonen, “Algorithms for approximate string matching,”
Inf. Control, vol. 64, no. 1, pp. 100-118, 1985.

G. M. Landau and U. Vishkin, “Efficient string matching with &
mismatches,” Theoretical Comput. Sci., vol. 43, pp. 239-249, 1986.

P. Ferragina and G. Manzini, “Opportunistic data structures with
applications,” in Proc. 41st Annu. Symp. Found. Comput. Sci., 2000,
Art. no. 390.

Ilumina. Pair-end sequencing. 2010. [Online]. Available: http://
www.illumina.com/technology/next-generation-sequencing/
paired-end-sequencing_assay.html

Z. D. Stephens, M. E. Hudson, L. S. Mainzer, M. Taschuk,
M. R. Weber, and R. K. Iyer, “Simulating next-generation sequenc-
ing datasets from empirical mutation and sequencing models,”
PL0S One, vol. 11, no. 11, Nov. 2016, Art. no. e0167047.

N. C. for Supercomputing Applications (NCSA). Blue waters
supercomputer. 2012. [Online]. Available: https://bluewaters.
ncsa.illinois.edu/

R. J. Lipton and D. Lopresti, “A systolic array for rapid string
comparison,” in Proc. Chapel Hill Conf. VLSI, 1985, pp. 363-376.

D. T. Hoang and D. P. Lopresti, “FPGA implementation of systolic
sequence alignment,” in Proc. Int. Workshop Field Programmable
Logic Appl., 1993, pp. 183-191.

S. A. Guccione and K. Eric, “Gene matching using JBits,” in Proc.
Reconfigurable Comput. Going Mainstream 12th Int. Conf. Field-Pro-
grammable Logic Appl., 2002, pp. 1168-1171.

P. Zhang, G. Tan, and G. R. Gao, “Implementation of the
smith-waterman algorithm on a reconfigurable supercomputing
platform,” in Proc. 1st Int. Workshop High-Perform. Reconfigurable
Comput. Technol. Appl. Held Conjunction SC07, 2007, pp. 39-48.

N. Ahmed, V. M. Sima, E. Houtgast, K. Bertels, and Z. Al-Ars,
“Heterogeneous hardware/software acceleration of the BWA-
MEM DNA alignment algorithm,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Des., Nov. 2015, pp. 240-246.

Xilinx. Hierarchical design methodology guide. 2010. [Online].
Available: https:/ /www .xilinx.com/support/documentation/sw_
manuals/xilinx12_2/Hierarchical Design Methodology Guide.
pdf

M. J. Jaspers, “Acceleration of read alignment with coherent
attached FPGA coprocessors,” Master’s thesis, Microelectron.
Comput. Eng., Delft Univ. Technol., The Netherlands, 2015.

J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. AviZzienis,
J. Wawrzynek, and K. Asanovi¢, “Chisel: Constructing hardware
in a Scala embedded language,” in Proc. Des. Autom. Conf.,
Jun. 2012, pp. 1212-1221.

J. Daily, “Parasail: SIMD C library for global, semi-global, and
local pairwise sequence alignments,” BMC Bioinf., vol. 17, no. 1,
Feb. 2016, Art. no. 81.

A. Sirasao, E. Delaye, R. Sunkavalli, and S. Neuendorffer, “FPGA
based OpenCL acceleration of Genome sequencing software,” in
Poster Presented at Supercomputing, Austin, TX, USA, Nov. 2015.
[Online]. Available: http:/ /sc15.supercomputing.org/sites/all/
themes/SC15images/tech _poster/tech_poster_pages/post269.
html

G. Andrews, Foundations of Multithreaded, Parallel, and Distributed
Programming. Reading, MA, USA: Addison-Wesley, 2000.

E. Georganas, A. Bulug, J. Chapman, L. Oliker, D. Rokhsar, and
K. Yelick, “merAligner: A fully parallel sequence aligner,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., May 2015, pp. 561-570.

M. Farrar, “Striped smith-waterman speeds database searches six
times over other SIMD implementations,” Bioinf., vol. 23, no. 2,
pp- 156-161, Nov. 2006.

R. Hughey, “Parallel hardware for sequence comparison and
alignment,” Comput. Appl. Biosci., vol. 12, no. 6, pp. 473-479,
Dec. 1996.

http://adsabs.harvard.edu/abs/1966SPhD...10..707L
https://arxiv.org/abs/1111.5572
http://www.nallatech.com/wp-content/uploads/IBM_CAPI_Users_Guide_1--2.pdf
http://www.nallatech.com/wp-content/uploads/IBM_CAPI_Users_Guide_1--2.pdf
http://www.nallatech.com/wp-content/uploads/IBM_CAPI_Users_Guide_1--2.pdf
http://people.ischool.berkeley.edu/~hearst/irbook/
http://people.ischool.berkeley.edu/~hearst/irbook/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.6177
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.121.6177
http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.html
http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.html
http://www.illumina.com/technology/next-generation-sequencing/paired-end-sequencing_assay.html
https://bluewaters.ncsa.illinois.edu/
https://bluewaters.ncsa.illinois.edu/
https://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/Hierarchical_Design_Methodology_Guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/Hierarchical_Design_Methodology_Guide.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/Hierarchical_Design_Methodology_Guide.pdf
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post269.html
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post269.html
http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/tech_poster_pages/post269.html

346

[44] Y. Liu, W. Huang, J. Johnson, and S. Vaidya, “GPU accelerated
Smith-Waterman,” in Proc. 6th Int. Conf. Comput. Sci., 2006,
pp- 188-195.

Y. Liu, B. Schmidt, and D. L. Maskell, “CUSHAW: A CUDA com-
patible short read aligner to large genomes based on the burrows-
wheeler transform,” Bioinf., vol. 28, no. 14, pp. 1830-1837,
May 2012.

K. Zhao and X. Chu, “G-BLASTN: Accelerating nucleotide align-
ment by graphics processors,” Bioinf., vol. 30, no. 10, pp. 1384—
1391, Jan. 2014.

N. Corporation. Nvbio. 2015. [Online]. Available: https://
developer.nvidia.com/nvbio

Y. T. Chen, J. Cong, J. Lei, and P. Wei, “A novel high-throughput
acceleration engine for read alignment,” in Proc. IEEE 23rd Annu.
Int. Symp. Field-Programmable Custom Comput. Machines, May 2015,
pp- 199-202.

R. Kaplan, L. Yavits, R. Ginosar, and U. Weiser, “A resistive CAM
processing-in-storage architecture for DNA sequence alignment,”
IEEE Micro, vol. 37, no. 4, pp. 20-28, 2017.

Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A Genomics
co-processor provides up to 15,000x acceleration on long read
assembly,” in Proc. 23rd Int. Conf. Archit. Support Program. Lan-
guages Operating Syst., 2018, pp. 199-213.

M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan,
“GateKeeper: A new hardware architecture for accelerating pre-
alignment in DNA short read mapping,” Bioinf., vol. 33, no. 21,
pp- 3355-3363, May 2017.

E. Rucci, C. Garcia, G. Botella, A. E. D. Giusti, M. Naiouf, and
M. Prieto-Matias, “OSWALD: OpenCL Smith-Waterman on
Altera’s FPGA for large protein databases,” Int. |. High Perform.
Comput. Appl., vol. 32, no. 3, pp. 337-350, 2018.

J. Peltenburg, S. Ren, and Z. Al-Ars, “Maximizing systolic array
efficiency to accelerate the PairHMM forward algorithm,” in Proc.
IEEE Int. Conf. Bioinf. Biomed., 2016, pp. 758-762.

S. S. Banerjee, M. El Hadedy, C. Y. Tan, Z. T. Kalbarczyk,
S. Lumetta, and R. K. Iyer, “On accelerating pair-HMM com-
putations in programmable hardware,” in Proc. 27th Int. Conf.
Field Programmable Logic Appl., Sep. 2017, pp. 1-8.

S. Huang, G. J. Manikandan, A. Ramachandran, K. Rupnow,
W. Mei, W. Hwu, and D. Chen, “Hardware acceleration of the
pair-HMM algorithm for DNA variant calling,” in Proc. ACM/
SIGDA Int. Symp. Field-Programmable Gate Arrays, 2017, pp. 275-
284.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy,
J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo,
Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy,
B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and
D. S. Modha, “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Sci., vol. 345,
no. 6197, pp. 668673, Aug. 2014.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandra-
sekaran, J.-M. Bussat, R. Alvarez-Icaza,]. V. Arthur, P. A. Merolla,
and K. Boahen, “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations,” Proc. IEEE, vol. 102,
no. 5, pp. 699-716, May 2014.

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571]

Subho Sankar Banerjee received the BTech degree in computer sci-
ence and engineering from LNMIIT, India. He is working toward the
PhD degree in computer science at the University of lllinois at Urbana-
Champaign. His research focuses on the design and implementation of
workload optimized computing systems (using hardware accelerator
and parallel runtime environments) for data analytics workloads.

Mohamed El-Hadedy received the BSc and MSc degrees from the
Mansoura University, Egypt, in 2002 and 2006, respectively, and the
PhD degree in electrical and computer engineering from the Telematics
Department, Norwegian University of Science and Technology, Trond-
heim, Norway, in 2012. He is a research scientist with the University of
lllinois at Urbana-Champaign. His main research interests include
FPGA-based accelerator design for cryptography, signal/image proc-
essing, robotics, and genomics.

IEEE TRANSACTIONS ON COMPUTERS, VOL.68, NO.3, MARCH 2019

Jong Bin Lim received the BS degree in electrical engineering from the
University of lllinois at the Urbana-Champaign, in 2014. He is currently
working toward the PhD degree in the Department of Electrical and
Computer Engineering, University of lllinois at Urbana-Champaign. His
current research interests include optimal system-on-chip and acc-
elerator design by using high-level synthesis, and hardware-software
co-design.

Zbigniew T. Kalbarczyk is a research professor with the Electrical
and Computer Engineering and the Coordinated Science Laboratory,
University of lllinois at Urbana-Champaign. His research interests
include the area of design and validation of reliable and secure comput-
ing systems.

Deming Chen received the BS degree in computer science from the
University of Pittsburgh, Pennsylvania, in 1995, and the MS and PhD
degrees in computer science from the University of California at Los
Angeles, in 2001 and 2005, respectively. He is a professor with the
ECE Department, University of Illinois at Urbana—Champaign, where he
is the Donald Biggar Willett Faculty Scholar. His current research
interests include system-level and high-level synthesis, nano-systems
design and nano-centric CAD techniques, GPU and reconfigurable
computing, hardware security, and computational genomics.

Steven S. Lumetta received the AB degree in physics from the Univer-
sity of California, Berkeley, in 1991, and the MS and PhD degrees in
computer science from the University of California, Berkeley, in 1994
and 1998, respectively. He is an associate professor of Electrical and
Computer Engineering and a research associate professor with the
Coordinated Science Laboratory, University of lllinois at Urbana-Cham-
paign. His research interests include optical networking, high-perfor-
mance networking and computing, hierarchical systems, and parallel
run-time software.

Ravishankar K. lyer is the George and Ann Fisher distinguished pro-
fessor of engineering with the University of lllinois at Urbana-Cham-
paign. He holds appointments with the Department of Electrical and
Computer Engineering, the Coordinated Science Laboratory (CSL), and
the Department of Computer Science, serves as chief scientist of the
Information Trust Institute, and is affiliate faculty of the National Center
for Supercomputing Applications (NCSA).

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

https://developer.nvidia.com/nvbio
https://developer.nvidia.com/nvbio

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

