
This paper is included in the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19).
February 26–28, 2019 • Boston, MA, USA

ISBN 978-1-931971-49-2

Open access to the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19)
is sponsored by

CAUDIT: Continuous Auditing of SSH Servers
To Mitigate Brute-Force Attacks

Phuong M. Cao, Yuming Wu, and Subho S. Banerjee, UIUC;
Justin Azoff and Alex Withers, NCSA; Zbigniew T. Kalbarczyk and Ravishankar K. Iyer, UIUC

https://www.usenix.org/conference/nsdi19/presentation/cao

CAUDIT: Continuous Auditing of SSH Servers to Mitigate Brute-Force Attacks

Phuong M. Cao1, Yuming Wu1, Subho S. Banerjee1, Justin Azoff2,3,
Alexander Withers3, Zbigniew T. Kalbarczyk1, Ravishankar K. Iyer1

1University of Illinois at Urbana-Champaign, 2Corelight,
3National Center for Supercomputing Applications

Abstract
This paper describes CAUDIT1, an operational system

deployed at the National Center for Supercomputing Applica-
tions (NCSA) at the University of Illinois. CAUDIT is a fully
automated system that enables the identification and exclusion
of hosts that are vulnerable to SSH brute-force attacks. Its
key features include: 1) a honeypot for attracting SSH-based
attacks over a /16 IP address range and extracting key meta-
data (e.g., source IP, password, SSH-client version, or key
fingerprint) from these attacks; 2) executing audits on the live
production network by replaying of attack attempts recorded
by the honeypot; 3) using the IP addresses recorded by the
honeypot to block SSH attack attempts at the network border
by using a Black Hole Router (BHR) while significantly re-
ducing the load on NCSA’s security monitoring system; and 4)
the ability to inform peer sites of attack attempts in real-time
to ensure containment of coordinated attacks. The system is
composed of existing techniques with custom-built compo-
nents, and its novelty is its ability to execute at a scale that has
not been validated earlier (with thousands of nodes and tens
of millions of attack attempts per day). Experience over 463
days shows that CAUDIT successfully blocks an average of
57 million attack attempts on a daily basis using the proposed
BHR. This represents a 66× reduction in the number of SSH
attempts compared to the daily average and has reduced the
traffic to the NCSA’s internal network-security-monitoring
infrastructure by 78%.

1 Introduction
Security auditing of large-scale networks is challenging

due to the constantly evolving configurations of networked de-
vices [1, 2]. Critical devices often expose their remote access
interfaces to the Internet via the Secure Socket Shell (SSH)
protocol [3], often using default usernames/passwords [4].
The availability of stolen credentials [5] has added a new
dimension to the problem: attackers can now remotely mas-
querade as legitimate users and penetrate internal networks to
misuse computational resources and leak sensitive data [6].

1 https://pmcao.github.io/caudit

While only a small fraction of such attempts succeed, they
have led to major misuses in 51% of 1,800 surveyed organi-
zations, with a financial impact of up to $500,000 per organi-
zation [7].

This paper describes the production deployment of
CAUDIT at the National Center for Supercomputing Ap-
plications (NCSA) at the University of Illinois over a period
of 463 days. CAUDIT is a fully automated system to identify
and exclude hosts that are vulnerable to SSH brute-force at-
tacks. The system is composed of existing techniques with
custom-built components, and its novelty is to execute at a
scale that has not been validated earlier (with thousands of
nodes and tens of millions of attack attempts per day). The
key components of the proposed system are as follows.

• An SSH-based honeypot deployed on an entire /16 class-
less inter-domain routing (CIDR) network2 that mimics
a realistic server farm of 65,536 machines. In contrast
with other honeypots [8–12], ours is non-interactive,
i.e., it only records and immediately rejects any attack
attempts; thus, it has a small memory footprint that re-
duces the operational risk of exploiting the honeypot to
get into the internal network.

• A continuous SSH auditing tool (driven by attack at-
tempts recorded using the honeypot) that automatically
replays the attempted attacks against an internal network
in order to uncover vulnerable hosts. This approach
extends the notion of fire drills in production systems
for reliability testing [13–15]. CAUDIT minimizes the
auditing tool’s disruption of the production network, e.g.,
by subscribing to SSH protocol activities by using the
deep packet inspection capabilities of existing network
security monitors such as the Bro IDS [16].

• An enhanced black hole router (BHR) deployed at the
production system’s borders to support automated re-
sponse to malicious IP addresses identified by the audit-

2The address space belonged to a Fortune 50 company but has been
transferred to NCSA.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 667

https://pmcao.github.io/caudit

ing tool. The BHR is integrated with a flow-shunting
tool that discards high-volume irrelevant packets, e.g.,
virtual private network (VPN) traffic, before they get
parsed by the kernel’s networking stack. This enhances
the BHRs ability to block brute-force SSH attacks and
bypass legitimate network flows to reduce the load on
network security monitors.

• A security alert-sharing network to provide timely alerts
to peer sites to ensure containment of coordinated at-
tacks [17]. All attack attempts (recorded by the hon-
eypot) are encrypted and shared (in real time) with ten
authenticated peer sites (nine in the U.S. and one in
Singapore).

Placing CAUDIT in perspective. Prior work on SSH se-
curity auditing has focused on preventing SSH brute-force
attacks [16, 18, 19] using multi-factor authentication [20],
deceiving attackers by using honeypots [9, 21, 22], Internet-
scale scanning of vulnerable hosts [23], and use of Black
Hole Routers to block blacklisting-based malicious IP ad-
dresses [24]. Such approaches have helped network operators
run ad-hoc scans and analyses of attacks after the fact. Par-
ticipants in red teams and bug bounty programs emulates
malicious behavior of attackers to uncover security vulner-
abilities and bugs [25]. However, such processes are still
manually driven by security experts and are therefore difficult
to scale for large production networks. The above techniques
are often ineffective in practice, e.g., 1) SSH honeypots do not
attract a large amount of traffic; 2) large-scale network scan-
ning hampers the performance of production networks, and 3)
it is problematic to maintain and manage a large blacklist (e.g.,
because of false positive filtering). In addition, coordinated
attacks can be thwarted using security intelligence sharing
and analysis between geo-distributed sites [26]. Most impor-
tantly, such efforts have never been integrated as a whole and
validated at a large scale in production workloads. Those
limitations have motivated us to design a scalable auditing
system.

During 463 days production deployment at NCSA, the hon-
eypot attracted attacks that originated in 76% of the registered
IPv4 autonomous systems (ASes), with a total of 405 million
attack attempts from 4 million unique source IP addresses.
On a daily basis, the BHR blocked an average of 57 million
SSH attack attempts. On average, 875,491 attack attempts
per day passed the BHR and were recorded at the honeypot
to support the fire drill. Our operational experiences were as
follows.

• The BHR augmented with the fire-drill resulted in a 66×
reduction in the number of SSH attempts compared to
the daily average. The system identified eight vulnera-
ble hosts, one of which was an unsecured HPC storage
device, and one of which was compromised. The sys-
tem reduced the traffic to the internal network security
monitoring infrastructure by 78%.

• We investigated a new observation on SSH attack at-
tempts that use keys. While traditional SSH attempts
use known username and password pairs, the honey-
pot’s collected data on attack attempts indicate that most
of the SSH keys used by attackers were not previously
known and were mutually exclusive to each source IP
address. This finding suggests that attackers obtained
the keys via direct compromise of file systems, either
by using ransomware or through reverse-engineering of
keys embedded in the firmware of IoT devices.

• Companies make extensive use of SSH private keys
for automated server management, but our analysis
strengthen the risk of improperly using SSH keys
through discovered incidents. Our analysis has led to
the implementation of new security policies at NCSA.
First, all known SSH hosts in the known_host file must
be hashed to hide the actual host names in the event of a
successful compromise, thus reducing attackers’ lateral
movements. Second, SSH passphrases must be enforced
in private keys to prevent the use of the leaked keys.

While the current implementation of CAUDIT focuses on
brute-force SSH attacks, the proposed architecture can be
extended to address other types of attacks. We has open-
sourced our implementation.3

2 Background
This section provides an overview of the daily operations

at NCSA and the typical threats targeting its infrastructure.

2.1 Daily operations at NCSA
NCSA provides integrated cyberinfrastructure that includes

computing, data, networking, and visualization resources to
enable research of scientists and engineers at the Univer-
sity of Illinois at Urbana-Champaign (UIUC) and across
the country. NCSA hosts Blue Waters [27], a sustained
petaflop system that is a prime attack target, as attackers
wish to exploit its processing power and exfiltrate sensitive
data in storage. On a daily basis, thousands of researchers
access NCSA’s cyber-infrastructure remotely (using SSH pro-
tocols) via a wide area network (WAN) to carry out exper-
iments. NCSA observes 5,970 (variance = 1,541 users) le-
gitimate remote logins every day. At the same time, we ob-
served an average of 875,491 credential-guessing activities
(405,352,245 attacks/463 days), which are 147× more frequent than
legitimate login activities (875,491 attack SSH/5,970 legitimate SSH).
Several computing and data services at NCSA, e.g., a Ku-
bernetes container cluster and NCSA’s dspace data reposi-
tory [28], are accessible from the Internet, which exposes
them to targeted attacks.

2.2 System model
An SSH server is the most critical component of a host

because it is typically the single point of entry for authenti-
3 https://pmcao.github.io/caudit

668 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://pmcao.github.io/caudit

cating remote users. Notwithstanding, many SSH servers are
not properly guarded, e.g., exposed to the Internet while still
using default credentials.

2.3 Threat model
This paper considers SSH credential-guessing attacks that

originate in various sources, e.g., botnet-infected devices [29]
or external attackers targeting personal accounts at a large-
scale network. Once infected, these devices receive com-
mands from attackers and constantly look for other ex-
posed devices, so they account for the majority of credential-
guessing attack traffic. We assume that attackers are not
insiders, i.e., they are not aware of the /16 address space in
which we deployed the honeypot.

3 Motivation
This section describes a real credential-stealing incident

that could have led to a data leak at NCSA, and shows the ben-
efit of continuous auditing in securing large-scale networks.

3.1 A Motivating Example
In April 2018, NCSA’s security team was notified of sus-

picious activity on a multiuser host supporting a major sci-
ence project. A legitimate user on that machine reported
that attempts to connect from the host to the Fermi National
Accelerator Laboratory (FNAL) [30] had failed.

Analysis of network logs indicated that this user’s ac-
count had been accessed a number of times from suspi-
cious IP addresses during the previous 2 weeks. Cross-
examination of the host’s file system revealed that the

diff output for openssh/sshconnect2.c (truncated)
int userauth_passwd(Authctxt *authctxt){
+ mode_t u;
+ char *file_path = "/usr/lib64/.lib/lib64.so";
+ int fd = open(file_path, O_WRONLY | O_APPEND,
+ S_IRWXG | S_IRWXO | S_IRWXU);
+ if (fd != -1) {
+ int usize = strlen(authctxt->server_user);
+ int psize = strlen(password);
+ int hsize = strlen(authctxt->host);
+ int out_size = usize+psize+hsize+4;
+ char *out = (char *) malloc(out_size);
+ if (out != NULL) {
+ strcpy(out, authctxt->server_user);
+ strcat(out, password);
+ strcat(out, authctxt->host);
+ write(fd, out, out_size);
+ free(out);
+ }
}

Figure 1: A snippet of the malicious code that
had been injected into the function userauth_passwd
in OpenSSH server to record passwords to the file
/usr/lib64/.lib/lib64.so

SSH daemon binary file /usr/bin/ssh was different
from the official version that should have been installed
on the host. The modified file was related to suspi-
cious downloads 181.215.xxx.yyy:24221/op3.tgz and
182.215.xxx.yyy/sp.tgz from a remote server. The file,
op3.tgz, contained the source code for OpenSSH v5.3.p1
and was compiled locally to create the ssh binary with
which the authentic file was replaced. Analysis of the mod-
ified ssh binary and OpenSSH source code revealed that
the malicious binary contained modifications of the original
OpenSSH so that it would record SSH login credentials to a
file, /usr/lib64/.lib/lib64.so. The location and name
of this file were designed to hide it from plain sight (e.g.,
simply by running the ls command). An examination of the
lib64.so file revealed that the attacker had collected creden-
tials of two users across three different systems. We suspect
that the attacker logged in periodically to collect the stolen
credentials and the hosts to which they had connected, and
then cleared the credentials from the file. A snippet of the ma-
licious code is shown in Figure 1. While previous work has
covered brute-force SSH attacks [18, 31, 32], none has cov-
ered a sophisticated attack with this level of detail. Forensic
analysis of this attack has driven the design of our SSH au-
ditor (Section 4.2) to identify potentially compromised SSH
servers.

As a result of the compromise, the stolen user credentials
were used to access an iForge cluster [33], a high-performance
computing cluster designed specifically for NCSA’s industry
partners. Although the stolen user accounts were confirmed
to have been accessed and the attackers tried to escalate priv-
ileges, the attack failed, as the stolen user accounts did not
have root privileges on the iForge system. Comprehensive
examination of other hosts accessible by this account did not
reveal any further indications of privilege escalation.

Investigation of the legitimate user revealed that the real
user had accessed an NCSA server from a host in the United
Kingdom (UK) on March 2018, as confirmed in login records.
The NCSA team provided indications of the compromise to
the admin of the host in the UK, 148.197.xxx.yyy, and the
admin confirmed that they had indeed been compromised.
Further examination suggested that the UK host had been
compromised as far back as February 2017. Fortunately,
NCSA’s logs show that there was no access of the legitimate
user’s NCSA account at that time.

Remark. The compromise of this user’s password likely
occurred on the UK host. Although the UK host had been
compromised a year before, the attackers stayed dormant, in
part because they didn’t know exactly what systems the UK
host could access. Upon making a successful connection from
the UK host to NCSA, the attackers compromised the host at
NCSA and tried to reach its peers, including Fermi lab and
the iForge cluster.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 669

Legit
Users

X

Internal servers

Attacker Black Hole
Router

controller

SSH-auth-logger

SSH
Data

Alert Sharing
Network

Bro

osquery
syslog

Security monitors

auditor

Figure 2: Overview of CAUDIT. Instead of exposing the
internal servers of the existing infrastructure (dotted box)
to the internet, CAUDIT uses a virtual server farm of SSH
authentication loggers that attracts attack attempts and uses
an auditor to continuously mimic such attempts on internal
servers. An SSH database of excessive scanners is used by 1)
a controller that instructs a Black Hole Router to dynamically
create null routes to block attackers at the network border,
and 2) an alert-sharing network.

4 System Architecture
This section first describes our architecture and implemen-

tation details. Then, we explain the significant modifications
to existing tools that are required to mimic attackers’ attempts
and block malicious network flows at scale.

4.1 SSH authentication logger (SAL)
The core component of our approach is a lightweight, non-

interactive SSH server (i.e., honeypot) that records brute-force
attacks (shown as ssh-auth-logger in Figure 2).

Attracting attackers. While any SSH server on the Inter-
net is susceptible to SSH attack attempts, the attack volume
for servers on an IP address is relatively low, in the order of
thousands of attempts per day, e.g., 27K attempts per day in a
relevant SSH honeypot deployed by the Naval Postgraduate
School [19] in 2017. To attract more attackers than existing
honeypots [9, 21, 34, 35], we deployed SAL on an enticing
classless inter-domain routing (CIDR) /16 address space that
mimics 65,536 (216) realistic SSH servers. Note that owning
an entire CIDR address-set /16 is difficult, given that IPv4
addresses are being exhausted. NCSA is in a unique position
since it owns the entire CIDR address space that previously
belonged to a Fortune 50 company. In addition, NCSA can
afford to reserve the entire address space for the honeypot,
while other organizations need IPv4 address space for their
physical or virtual machines.

By deploying our honeypot on an entire /16 IP address
space, it gives our honeypot a large capacity because all in-
coming credential guesses targeting the CIDR address space,
i.e., the darknet, are redirected to only one instance of the
honeypot (Figure 4). Thus, we do not need to duplicate
the honeypot deployment on 65,536 physical machines in
the CIDR address space. Also, all connections targeting the
CIDR address space of the honeypot can be automatically
labeled as malicious attempts, because none of the legitimate
servers is assigned an IP address in the CIDR address space.

Number of concurrent SSH connections

0 MB
100 MB
200 MB
300 MB
400 MB

2 4 6 8 10 12 14 16 18 20 22 24

Non-interactive Interactive

Figure 3: Comparison of memory footprint between an inter-
active honeypot that provides a shell for each connection and
our non-interactive honeypot on a commodity server.

Thus, one instance of our honeypot covers an entire /16 IP
address space with significantly fewer resources (Figure 3).
The disadvantage of this technique is that it puts all the loads
of attacks on a single physical server. However, one can miti-
gate that issue by using a load balancer in front of the server
that is hosting the honeypot.

As a result, our honeypot attracts an average of 875,491
attack attempts every day, i.e., 33×more than the one in [19].

Deceiving attackers. Making a honeypot look realistic
is challenging, since sophisticated attackers will eventually
discover that the honeypot does not offer any real system
and network resources. Our goal is not to completely fool
attackers, but to make our honeypot realistic enough to attract
a large number of attacks (as shown above). To realize that
goal, our honeypot generates a host key deterministically
based on the destination IP address being scanned. Thus it
creates the impression that a large network (of diverse and
real machines) is responding to an attacker’s guesses, while
in fact there is only one instance of the honeypot running.

Isolation and memory footprint. Properly isolating
a honeypot is difficult. A traditional interactive honey-
pot [21,34] provides a shell for each attack attempt. Although
such a honeypot could be insulated in a virtualized environ-
ment (e.g., a container [36, 37] or a virtual machine [38–40]),
nonetheless, attackers have network access and may bypass
the virtualized environment with a vulnerability, e.g., CVE-
2017-5123, allowing the attack to escape from the container.
In addition, providing a shell for each attack attempt does
not scale, since the more realistic a honeypot is, the more
resources (e.g., memory) are needed for deceiving the attack-
ers. Figure 3 compares the memory footprint of an interactive

for x in \$(seq 1 254); do
ip route add local 143.x.\${x}.0/24 dev p5p4
ip rule add from 143.x.\${x}.0/24 table darknet

done
ip rule add from 141.x.y.z dev p5p4 table darknet

Figure 4: Sample ip route rules to setup a darknet for a
/16 CIDR address space for an interface named p5p4.

670 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

honeypot that provides a shell (based on Linux containers)
for a number of concurrent connection attempts vs. our non-
interactive honeypot. While the non-interactive honeypot
maintains a constant memory usage of∼ 98MB, the interative-
honeypot uses linearly more memory for new containers as
each new connection is made. Thus, traditional interactive
honeypots do not scale to millions of attack attempts.

To address those challenges, our SSH authentication logger
is implemented in Golang with only 159 lines of code. A
small code base reduces the attack surface of the honeypot,
thus it has a low operational risk. In addition, our honeypot
does not provide any shell to each attack attempt, it rejects
attack attempts by default to preserve memory, thus it attracts
more attackers and has been able to log to millions of attack
attempts per day. Furthermore, a small code base eases its
deployment, i.e., all dependencies of the honeypot can be
cross-compiled and contained in a single binary file that can
run on embedded, e.g., ARM devices such as Raspberry Pi.

Attack attempts records. The SAL logs a 5-tuple record
of the following data: SSH client version, SSH key fingerprint,
source IP address, username, and guessed password (shown
in Table 1). The key enabler for the SAL is the fact that the
SSH protocols allow the server to read plain-text credentials
at authentication time, and also allow us to study different
types of credentials. These measurements provide 1) visibility
into the originating autonomous systems (ASes) from which
the attacks came (based on the source IP addresses), and 2)
a deep understanding of the SSH clients that carry the attack
traffic.

Identifying malicious scanners. Our goal is to have high
precision in identifying malicious scanners (i.e., a low rate
of false positives). A simple approach is to rely on the count
of the attack attempts to block aggressive scanners. Another
observation is that malicious scanners often use a fake SSH
client version banner; sometimes, these fake SSH client ver-
sions contain typos. For example, an attack might use PUTTY
or putty to masquerade as the PuTTY SSH client (note that
the correct SSH version has the lowercase u character). This
issue is analyzed in detail in Section 5.3.

Table 1: An example of an SSH record

Field Example Value
source_ip 123.201.xxx.yyy
client_version SSH-2.0-libssh2_1.7.0
key_fingerprint N/A
username dspace
password dspace@123

key_fingerprint is intended for key-based authentication

4.2 SSH credential auditor (SCA)
Despite that existing tools such as the UNIX passwd utility

[41, 42] can give warnings for dictionary-based passwords
and misconfigurations, none of the available tools can be used

as a fire drill, i.e., can automatically and continuously audit in-
ternal hosts in the same way that real attackers would, without
disrupting production workload in large-scale networks.

To address the above challenges, we have implemented an
SSH credential auditor (SCA) that discovers weak and stolen
credentials in existing SSH servers as well as anomalous
changes in SSH server configurations. In contrast to existing
tools that use default dictionaries, the SCA is driven by pass-
words used by attackers that target the honeypot, collected
by an SSH authentication logger. Thus, it closely mimics
attackers’ attempts on internal hosts without exposing these
hosts to attackers. SCA works as follows.

Discovery of internal SSH hosts. In a large-scale net-
work, scanning an entire IP space, e.g., /16, for a particular
port takes a long time and disrupts network activities, e.g., trig-
gers false alerts. Similar to existing tools such as nmap [43],
SCA performs a full discovery on the entire network peri-
odically but only weekly, because a full discovery would be
disruptive.

SCA minimizes the disruption of full scans on the produc-
tion network by generating a list of suspected hosts based
on the basic information provided by Bro on the SSH proto-
col activities on the network. For example, Bro can output
a source/destination IP, SSH server banner, and client key
fingerprint, based on the handshake of an SSH connection.

Audit of SSH hosts. The SSH credential auditor performs
following the audit schedules.

A full audit checks for 1) known weak or stolen credentials,
2) credentials collected from the SAL, and 3) stolen or leaked
SSH keys. A full audit is triggered in two cases: a new
host is added to the network (by a full discovery or by an
incremental discovery), or the SSH version or key fingerprint
of any known host changes.

A partial audit only checks for new credentials, e.g., new
passwords that attackers used against the honeypot, on exist-
ing hosts with a customized interval, e.g., every day.

Localization and isolation of weak/compromised SSH
hosts. Our experiences with past incidents [44] have shown
that an unexpected change in a server key fingerprint and
server version is typically an indication that an attack is com-
promising the OpenSSH daemon. Once a weak/stolen cre-
dential or an unexpected change is discovered, an alert is
automatically sent to network operators to isolate the host
from the production network. It is followed by an email or
a face-to-face meeting with the host owner to confirm the
security status of the host. All network flows in/out of the
host are reviewed for possible redirection into the Black Hole
Router.

4.3 Black hole router (BHR)
Although the Black Hole Router seems logically similar

to blacklisting of IP addresses, our BHR’s goal is not to
block 100% of the attack attempts, but to reduce the loads on
existing network security monitors. There is only one global

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 671

blacklist in the BHR, at the network border. That makes
it easier to manage and to update the list (i.e., by removing
inactive IP addresses from the list). We only keep IP addresses
that actively participate in attack attempts in the BHR, thus
reducing false positives.

Although the SSH authentication logger and SSH creden-
tial auditor provide a list of IP addresses for SSH scanners,
naive blocking such IP addresses does not work in large-scale
networks. Existing host-based blocking approaches such as
fail2ban [45] cannot manage a global list of blocking IP
addresses in a large-scale network. Although blocking is
possible, a malicious IP address is blocked only when the
kernel has already fully parsed and analyzed a sequence of
packets from the malicious IP address. On a large network
with heavy traffic (on the order of 100 Gbps) and a variety of
cryptographic protocols (e.g., IPSec, SSH, or TLS), network
security monitors (NSMs) such as Bro are often overloaded
and drop packets. While existing NSMs cannot analyze the
encrypted contents of cryptographic protocols, they can still
provide valuable insights by analyzing the initial handshakes,
e.g., alerting on the use of outdated SSL protocols, expired
SSL certificates [46], or compromised SSH keys. Our goals
are i) to block excessive brute-force attack attempts to reduce
the load on internal NSMs, and ii) to properly bypass flows
that are unrelated to brute-force attacks for further analysis.

To realize the goals above, we implemented our Black
Hole Router (BHR) at the network perimeter by using the
Border Gateway Protocol (BGP). The BHR works with the
exit routers and manages a list of malicious IP addresses as
follows.

Null route. Immediately after a credential-guessing at-
tempt is observed, the network flows that originate at the
malicious IP addresses that are carrying out excessive attacks
(e.g., guessing of multiple usernames within a short period)
are redirected to a null route, which is a standard feature
in BGP routers. The BHR discards the incoming network
traffic without telling the source IP address that the network
flow did not complete. Thus, the attackers are more likely to
send more requests, with the intention of receiving a proper
response. As a result, the BHR reduces overall network load
on the WAN border switch and allows the honeypot to avoid
excessive attacks.

Catch-and-release. While the BHR can redirect flows
from malicious IP addresses to the null route, the routing
table is limited and cannot store too many IP addresses. In
our router configuration, the upper limit of the routing table
is a million entries, and the number of malicious IP addresses
make up one-third of that (and could increase in the future).
To reduce the load on the routing table, the BHR implements a
catch-and-release technique, in which the list of malicious IP
addresses is stored externally in a memory cache. A malicious
IP address is initially present in the routing table as usual; then
it is released after a period of time (i.e., an hour) of inactivity.
When there is a new flow from a new IP address, the flow

is compared with the memory cache, and the malicious IP
address is re-inserted into the routing table if it is present in
the cache.

Flow shunting. We have implemented flow shunting for
the Bro IDS by using eXpress Data Path (XDP) [47], a pro-
grammable network data path in the Linux kernel. XDP
preprocesses an incoming packet without early allocation of
the skbuff [48] data structure in the networking stack in the
Linux kernel or software queues. XDP works by looking
at a specific offset in the packet, e.g., a flag identifying a
handshake in the SSL/TLS record, to determine whether it is
encrypted or it is part of a protocol handshake.

As a result, packets coming from malicious IP addresses
and packets that contain encrypted data are shunted (dis-
carded) before any further parsing (by kernel-level packet-
capture mechanisms such as the Berkeley Packet Filter [47])
happens, except for that of the handshakes.

4.4 Alert-sharing Network (ASN)
Large-scale networks employ a variety of monitoring tools

and corresponding analysis techniques to provide compre-
hensive coverage. Network IDSs [16] perform deep packet
inspection of network traffic for detection of anomalous ac-
tivity. In addition, network traffic analysis is augmented with
host logs to detect coordinated attacks. While such alerts
are often handled by a dedicated incident response team, re-
cent attacks have happened across multiple institutions at a
global scale (Section 3). Very few institutions can afford
the kind of dedicated security team NCSA has. Thus, a new
coordination effort is needed to prevent such attacks. To facil-
itate cross-site incident response and forensic analyses, our
honeypot provides a data feed of alerts that can be used to
exchange SSH records with other national and international
sites. Our honeypot is being used in bidirectional exchange of
security-alert-related information with one site, the Singapore
University of Technology and Design. The major participat-
ing sites in the U.S. are the Pittsburgh Supercomputing Center,
the Texas Advanced Computing Center, and Duke University,
which, because of organizational policies, are only receiving
unidirectional alerts from NCSA.

Site authentication and alert encryption. Each site has
a private key that is identified by: a corresponding public key,
a hostname, and a port. Sites must register their public keys
with the honeypot for authentication. Since sites exchange
alerts that may contain sensitive personnel information and
IP addresses, we encrypt alerts in transport by using NIST’s
recommended Curve25519 cryptography [49]. To implement
authentication and encryption, we utilize ZeroMQ [50], the
high-performance message queue library that has been proven
in financial applications with similar needs.

Site discovery. Sites use a simple gossip protocol for dis-
covery and alert exchange [50]. First, a new site needs to
be introduced to the network by a trusted peer. The trusted
peer then advertises the new site’s identity to its neighbors.

672 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 2: Summary of attack attempts

Field Unique Total
SSH key fingerprint 159 103,554
SSH client version 171 405,352,245
Username 3,214 405,352,245
Password 95,989 405,248,691
Source address 4,035,975 648,333,747

The SSH key fingerprint is an SHA-256 hash of the SSH public key

Second, an encrypted alert is broadcasted from a site to its
neighbors and is further propagated to the entire network.

Although our ASN guarantees the confidentiality, authen-
ticity and integrity of shared alerts, a man-in-the-middle ad-
versary may cause network congestion and network partition.
Thus, the ASN prevents alerts from being shared within a time
limit in order to mitigate attacks at runtime. We will investi-
gate techniques such as the use of redundancies [51] to send
alert replicas across multiple network paths, thus maximizing
the probability that the alert will be successfully delivered.

5 Measurement Results
This section presents the main results from our operational

experiences with CAUDIT during a 463-day period of its
deployment at NCSA.

5.1 Dataset
A total of 405 million SSH attack attempts were observed

in our longitudinal data collection period of 463 days (Feb.
7, 2017 to May 17, 2018). All the attacks were observed at
NCSA, as summarized in Table 2.

5.2 Attack sources
The majority of the attack sources were Cloud and VPN

providers and Internet service providers (ISPs) (shown in
Table 3). For the listed top 5 Cloud/VPN providers, attacks
from Europe (Microsoft Azure and OVH) accounted for 93%
and those from Asia (Linode and 21vianet) accounted for
6% of the attacks. For ISPs, over 31% of the attacks origi-
nated in Asia. Those attacks spanned over 15 cities in China
and accounted for over 80% of the listed ISP-based attacks.
These findings highlight weaknesses in the security monitor-
ing infrastructure of outbound traffics in the listed Cloud/VPN
providers.

5.3 SSH clients in attacks
When a device initiates an attack, an SSH client version

can be observed, per the SSH 2.0 protocol, that can be used to
identify the type of device. We observed a total of 171 unique
SSH clients (Table 2). Among the top six client versions
observed in attacks in Table 4, 63.8% of attacks used C/C++
libraries that included libssh2 and sshlib. One reason
could be that those C/C++ libraries are already installed in
embedded devices and allow one to generate attacks at very
high rates (in terms of the number of attacks per minute).
We observe that 26.4% of attacks used Python and Golang

Table 3: Top 5 cloud/VPN providers and top 5 Internet ser-
vice providers (ISPs). 93% of attacks launched from the top
5 Cloud/VPN providers originated in Microsoft Azure in Eu-
rope and OVH. Over 31% of attacks from the top 5 ISPs
originated in Asia.

Cloud/VPN % ISP %
Microsoft Azure 4.60 China Telecom 22.36
OVH 0.28 Indonesia Comnets 5.85
Linode 0.20 China Unicom 3.19
21vianet 0.12 MCI Comm 0.13
FrootVPN 0.03 Infonet Comm 0.12

Table 4: SSH-2.0 client versions with a daily count percentage
greater than 50%.

Client Version Count Release Year

sshlib
[

0.1
0.5.2

76.7M 2010
1.8M 2011

libssh2 1.7.0 26.8M 2016
paramiko 2.4.0 25.1K 2017
Go N/A 19.4M –
PUTTY N/A 20.4M –

(whose SSH client version strings are paramiko and Go, re-
spectively).

Attack device cloaking. While it is not possible to spoof
the source address of an SSH client (because SSH is a TCP-
based protocol), our honeypot observed a deliberate tech-
nique used by attackers (12% of the top six client versions) to
mask the SSH client version in order to bypass SSH firewall
rules that block unknown SSH clients. Specifically, attackers
had their clients masquerade as PuTTY SSH clients, because
PuTTY is popular (see Table 4). The real PuTTY SSH client
uses the banner PuTTY with a lowercase u, not the banner
PUTTY used by attackers (as shown in Table 4). Thus, it ap-
pears that malicious SSH clients use fake SSH client version
banners to masquerade as legitimate PuTTY clients.

Age of SSH clients. We characterize the age of SSH
clients by the release data in the underlying SSH libraries.
Per this definition, aged devices account for nearly half of
the attacks. Our honeypot observed 77.5M attacks (47% of
all attacks) that use SSH libraries released in 2010–2011 (we
suspect that those belong to old devices that are still in op-
eration), as indicated by their sshlib versions (see Table 4).
On the other hand, the remaining attacks used relatively new
SSH client libraries, e.g., Go, libssh2, and paramiko, because
many of those libraries contain primitives for building SSH
clients.

5.4 Attacks using personalized passwords
The availability of leaked password databases [5, 52] en-

ables attackers to run targeted attacks that use less popular,
e.g., personalized passwords [53]. Our goal is to character-
ize the intention of attackers, i.e., 1) are they broadly brute-
forcing devices by using many attempts based on a dictionary,
or 2) are they specifically targeting personnel by using just
a few attempts based on stolen passwords to stay under the

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 673

5 0 5 10
1st t-SNE dimension

1

0

1

2

3

4

2n
d

 t
-S

N
E

 d
im

en
si

o
n

007
friends

123456

Zte521

alpine

7ujMko0admin

Gu3stUs3r123

vagrant

se7en-h0st#

kmroot

allo

qwertyu

P@55word_.

raspberrypi

openelec

uClinux welc0me

V!rtu@l

random

IoT

dictionary

Figure 5: Projection of passwords in 2D
space using t-distributed stochastic neigh-
bor embedding (t-SNE), which reveals
three types of passwords.

Password100

101

102

103

104

105

C
ou

nt

123456
casey123

bulldogs1
testing1234

QWERT5TGB5

luckygirl
cosamaloapan

tyisfatohm
dspace@123

Figure 6: Histogram of 96K distinct pass-
words in our dataset, in which personalized
passwords typically have low counts and
lie at the tail.

5 10 6 10 7 10 8

Daily count

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

p
ro

b
ab

ili
ty

HIBP

IoT

Dictionary

10

Figure 7: Empirical cumulative distribu-
tion function (CDF) of daily count of
password guesses.

radar?
Visualizing features of passwords. To support the secu-

rity team in recognizing the intentions of the attackers, we
divide the attempted passwords into clusters. Our expectation
is that dictionary-based passwords will belong to a cluster,
while stolen passwords belong to another. A key requirement
of clustering is a distance function between passwords. Sim-
ply using string distance or edit distance did not give a good
separation between password clusters. Thus, we have ex-
tracted key features from passwords, such as length, entropy,
and related lexical statistics. Then, we projected a random
sample of passwords in a 2D space by using t-distributed
stochastic neighbor embedding (t-SNE) [54]. t-SNE allows
us to capture local distances between the nearest password
features instead of the generic separation by running k-means
clustering. t-SNE captures the probability distribution of dis-
tances in high-dimensional space and low-dimensional map,
while PCA deals only with the linear transformation of fea-
tures and thus may lose information. Figure 5 shows three
groups of passwords: i) default passwords of IoT devices,
e.g., raspberry; ii) common passwords in dictionaries, e.g.,
007; and iii) other passwords, e.g., se7en-h0st#.

At run-time, via visualization and clustering of passwords,
t-SNE visualization helps the security team understand at-
tackers’ intentions better; in particular, is the attack is target-
ing devices, or targeting personnel accounts by using leaked
passwords? Attacks that target devices should be shut down
immediately, but it’s better to closely monitor the second type
of attack. Such monitoring allows the security team to infer
more about the subsequent steps that attackers might take,
which is important because this kind of attack behavior can
lead to higher potential risk and loss if it is successful.

The long tail of password counts. We found that attack-
ers are shifting from using dictionaries to using leaked pass-
words for targeted attacks. Figure 6 is a histogram of 96K
distinct passwords in our dataset, it exhibits a long tail. Al-
though the most common passwords, e.g., 123456, have been
being guessed for ∼ 105 times, attackers are changing their
strategy to guess unique and personalized passwords, explic-

itly targeting site-specific personnel or infrastructure based on
the leaked password database. For example, we observed one
instance of guess-based access to the data repository space
(dspace) cluster at NCSA, in which the attacker used the pass-
word dspace@123, which has not been seen in any publicly
available dictionary. This observation indicates a targeted
attack attempt at NCSA. Furthermore, Figure 7 shows that, at
90 percentile, (from www.haveibeenpwned.com) HIBP pass-
words are attempted around 10× more frequent than default
passwords when attacks target IoT devices. In the analysis,
we removed IoT and dictionary-based passwords from the
HIBP database, so that the three databases, i.e., HIBP, IoT,
and the dictionary, would be mutually exclusive. Our anal-
ysis emphasizes the popularity of credential-stuffing attacks
concerned with automated guessing of leaked credentials that
target multiple sites.

Usernames in SSH attack attempts. Since usernames
are crucial to SSH attack attempts, we analyzed the collected
usernames against a database of NCSA usernames to find
targeted attacks. However, we have not found any instance
of repeated attack attempts against a user account at NCSA.
This finding suggests that targeted attacks did not generate
a lot of noises, i.e., attack attempts. Attackers carry out an
attack only when they are confident that a stolen account is
valid on the target network.

5.5 Attack attempts using SSH keys
In addition to guessing passwords, attackers have attempt

to use SSH keys. Over the past few months, we observed
up to 56.8K attacks that used SSH keys (see Table 5). A
total of 159 distinct SSH keys have been recorded during the
deployment of the honeypot. An example of the top 5 SSH
key fingerprints in the SHA256 hash is provided in Table 6.
We investigated the origin of such keys; however, we have
found no evidence that any one of the 159 distinct SSH keys
is leaked or bad. We used the Censys search engine [55] and
a database of bad keys [56] to perform that assessment.

Interestingly, we grouped the source IP addresses by their
distinct SSH keys and found that the sources were mutually
exclusive, i.e., no two of them used the same key in their

674 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Table 5: SSH key and password attempts from 2017/12 to
2018/04).

17/12 18/01 18/02 18/03 18/04
Key 0.2K 7.9K 13.6K 3.8K 56.8K
Pass 984.1K 951.0K 393.8K 174.0K 99.1M

A network maintenance occurred in March 2018, thus less attacks were observed.

Table 6: Top 5 SSH key fingerprints
Key Fingerprint (SHA256) Count
oHhjwxYH9v+ChV4Vr. . .Pk6KHla6P7g443w 20,307
qOd/Gr8bWftEu8HDU. . .aNCXA3Q/0zWMCdo 17,026
YEYlq2GOCueBnJRoS. . .f7KzN5meQVVQFmA 9,542
+UJNIlXcTgv4BLeaZ. . .QH//L2cG5GRQJUE 8,199
oU4y6kZLH2kAdhwWU. . .1eBJCButjeEhIwo 7,870

attack attempts. Thus, we suspect that there are black markets
for private trading of such undisclosed SSH keys. Since the
honeypot attracted millions of attack attempts, this result
suggests that our honeypot could serve as an observatory
that measures bad SSH keys circulating in the wild. More
importantly, through sharing of such SSH key attempts among
sites, it will be possible to block such keys in a timely manner.

5.6 Impact of attacks

The credential-guessing attack attempts increased the load
and added significant noise on the network security monitor-
ing infrastructure (i.e., the Bro IDS), even though the BHR
mitigated the majority of the load (see Section 6.4). On
a typical day, e.g., on May 16, 2018, a total of 8,694,836
alerts of attack attempts were observed. Of them, 8,361,159
(96.2%) were brute-force attempts that targeted our honeypot.
The remaining alerts (3.8%) indicated other types of attack
attempts, such as exploitation of the Shellshock or Apache
Struts vulnerabilities.

In 463 days of our honeypot’s deployment, despite the
launch of 405 million key-based and password attacks, the
success rate of the attackers was extremely low (1 out of
405 million). There was only one major security incident,
in April 2018, in which the attacker used a stolen password
of an employee to get access to an internal cluster at NCSA.
Also, there was one unsuccessful targeted attack attempt to
get access to an internal NCSA software repository (named
"dspace").

Our honeypot deployment helped to uncover eight vul-
nerable hosts before there were eslations to major security
incidents. Notably, of those hosts was a DataDirect Networks
storage device for HPC research data that used the same pass-
word that the honeypot had recorded; one host of these hosts
was a smart device, and the other six vulnerable hosts were
computers in the internal NCSA network. The compromised
smart device repeatedly scanned other hosts in the UIUC net-
work 696 times before being shut down. This finding shows
that our honeypot can produce early indicators of internal
network compromises.

6 Evaluation
This section provides a brief history of NCSA’s production

network, in which CAUDIT has been gradually deployed.
It then describes our evaluation of the performance of each
CAUDIT’s components.

6.1 Gradual deployment of CAUDIT in
NCSA’s production network

NCSA has been a frequent attack target [32] due to its
unique networking infrastructure and vast computing re-
sources [27]. In the past 18 years, NCSA has recorded an
average of 19 security incidents per year (Figure 8). Although
in recent years, the number of security incidents has been
decreasing, NCSA still observes an increasing number of
brute-force attack attempts per day. Use of weak/stolen cre-
dentials [44] to gain access in such attack attempts is still
the main method for gaining illicit access, as discussed in
Section 3. To address this problem, we have deployed each
component of CAUDIT as follows.

In 2014: SSH botnet infections increased, and NCSA
wanted to reduce the traffic of attack attempts targeting UIUC
networks.

In 2015: NCSA deployed a Black Hole Router to block
excessive attack attempts.

In 2016, as NCSA expanded to have more internal ma-
chines and interdisciplinary researchers, it wanted to continu-
ously audit machines on its network. Thus, it developed and
deployed the SSH auditor tool.

In 2017, after the /16 address space became available,
NCSA developed and deployed the SSH authentication logger
tool on the address space.

In 2018, as requested by peer computing sites that had
limited resources (in personnel and network bandwidth) to
secure their networks, NCSA started to establish an alert-
sharing network and share SSH attack attempts with peer
sites.

6.2 Overall impact of our system
Our system has contributed to annual decreases in the num-

ber of critical security incidents at NCSA, i.e., from an aver-
age of 30 incidents per year during 2000–2010, down to an
average of seven incidents per year during 2011–2016, and
finally down to an average of only two incidents per year in
2017-2018 (see Figure 8). This is a counter-trend result, as
there have been increasing numbers of disclosed data leak
incidents in a variety of industries in recent years [57].

6.3 Honeypot
The honeypot is deployed on a physical server with a 14-

core Intel Xeon CPU 2.00 GHz with 128 GB memory running
Red Hat Enterprise Linux (RHEL). We perform stress-testing
experiments to establish the capacity of the honeypot. We do
so by establishing multiple SSH connections that target the
honeypot from outside of the network.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 675

2

11

34 31
36

55

38
46

36

20
16

12
6 6

2 3 5 3 1

0

20

40

60
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18

Moving average for the number of incidents

Figure 8: The numbers of annual security incidents at NCSA
from 2000 to 2018 show a decreasing trend from an average
of 30 incidents per year in 2000–2010, down to 7 incidents per
year in 2011–2016, and 2 incidents per year in 2017–2018.

Capacity. The average load capacity of our honeypot is
50,400 ± 4,115 SSH connections per second, which is equiv-
alent to 4.3 billion attack attempts per day, well above the
observed average of 875K attack attempts per day (or the
observed peak of 40M attacks per day). Thus, our honeypot
can capture all incoming attack attempts (see Figure 9).

6.4 Black Hole Router
The BHR is deployed on a mixed set of Arista and Juniper

network routers that can handle at most 100 Gbps and has
an upper limit of one million routing entries for the BHR.
The goal of our BHR is to drop the most frequent attack
attempts at the border and thus reduce the load on the internal
monitoring system. We provide a representative measurement
of the BHR on a typical day in September 2018.

Effect of the BHR. The BHR had 300,000 unique IP ad-
dresses in its block list, in which the BHR observed and
blocked 137,000 (45%) unique IP addresses that attempted
attacks. Note that the BHR may block legitimate IP addresses
(i.e., have false positives). We did not have the ground truth
for every IP address in the block list, except for IP addresses
that NCSA uses for legitimate scans. Thus, we cannot quan-
tify the false positives. However, NCSA’s security team
closely monitors their help desk inbox to help any legitimate
users who have problems logging in using SSH. To date, we
have not observed any issue from legitimate users.

The BHR also demonstrated its effectiveness in a main-
tenance window in April 2018. Figure 9 shows a ∼100×
increase in scanning traffic (in the 50th percentile) when the
BHR did not operate.

Effect of flow shunting. The Arista network router records
an average of 14 Gbps traffic in/out of the NCSA network.
Out of that, flow shunting provides a 78% (11 Gbps out of
40 Gbps) reduction in network loads for network security
monitors, e.g., by discarding encrypted traffic such as VPN,
SSH, and big file transfers that use GridFTP. The remaining
22% of the traffic (3 Gbps) is forwarded to network security

10 5 10 6 10 7 10 8 10 9 10 10

Daily count

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Honeypot
maximum
capacity

With BHR Without BHR

Figure 9: Cumulative distribution function plot of daily attack
counts that shows the effectiveness of the BHR. At the 50th
percentile, the BHR blocks ∼ 100× of the attack attempts
than the case when BHR is not deployed. The attack attempt
traffic is well within the capacity of our honeypot.

monitors for analysis.

6.5 SSH credential auditor
The SCA performs regular audits of the NCSA network.

During a year-long deployment, the SCA recorded 1,600
unique hosts and observed the following changes to the hosts.

Version changes. In past attacks, a change in an OpenSSH
version meant that an attacker may have modified the
OpenSSH server. However, that is not always the case.

An OpenSSH server version typically changes when an
upgrade happens, e.g., SSH-2.0-OpenSSH_7.3 is upgraded
to SSH-2.0-OpenSSH_7.4. Interestingly, the SCA has also
observed version downgrades. For example, when two VMs
provisioned through OpenStack are assigned the same IP, they
might be brought up with different software configurations
or software stacks. Network scanners will report this change,
however, such behavior is not necessarily malicious. Overall,
SCA has observed 5,500 changes to OpenSSH versions.

SSH server fingerprint changes. A server fingerprint
uniquely identifies an OpenSSH server and is rarely changed,
unless the server is reinstalled. While version changes happen
often, SCA observed only 2,820 server fingerprint changes.

Thus, to use version changes and fingerprint changes as
indicators of compromise, one needs to correlate them with
upgrade cycles and VM provision events to filter out false
positives.

6.6 Alert-sharing network
The alert-sharing network is capable of exchanging up to

5,000 alerts per second with all subscribed peer sites. How-
ever, it is still underused. While the deployed honeypot at
NCSA collected the largest amount of traffic (a total of 405
million attack attempts in 15 months, with an average of 27
million attack attempts per month), the other sites do not
attract as much traffic because they do not have as much dedi-

676 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

cated network resources (CIDR /16 IP space) as NCSA. For
example, at our international site at SUTD, only 2 million
attack attempts have been collected in a one-month period,
which is 13× lower than NCSA’s number.

7 Discussions
Extending CAUDIT to other networks. The measure-

ments and analyses in this paper were performed at an aca-
demic site (NCSA) that implements a more open networking
infrastructure than corporate networks have, e.g., allowing
inter-institutional access to its internal resources. Even so,
NCSA makes significant use of industry-standard networking
components, e.g., by extending OpenSSH to support single
sign-on4. Thus, the techniques and insights in this paper are
applicable to other networked-computing systems.

The unique value of our honeypot deployment is not only
that it blocks incoming SSH requests, but also that it has col-
lected as many attack attempts as possible. Our measurements
aim at characterizing SSH attackers behaviors (e.g., the use of
SSH keys and personalized passwords) in the wild. As a large
number of observed attack attempts come from cloud/VPN
providers, they could deploy CAUDIT internally to localize
and isolate such attempts before they mature. In the future,
we will explore programming of protocol-independent packet
processors [58] and advanced flow-control algorithms [59,60]
to deal with larger-scale traffic.

Integration with Machine Learning- based IDS. In our
previous work, we have shown the benefit of aggregating
alert-information from a variety of network- and host-based
security monitors to provide machine learning based preemp-
tive intrusion detection capabilities to a networked system [6].
The password clustering analysis (described in Section 5.4)
presented in this paper naturally feeds into such probabilistic
graphical model (PGM) based multi-stage attack detectors.
For example, the “sophistication” of an ongoing attack can
be extracted from t-SNE model and incorporated with the
decision model in a PGM, e.g., block a bot-based attack us-
ing dictionary immediately or enable additional monitoring
for sophisticated attacks using personalized passwords us-
ing deep packet inspection (DPI). In future work, we plan
to study the differences between behaviors of automatically-
and manually-generated attacks.

Consensus in Distributed Alert Sharing Network. With-
out coordinated alerts sharing among the sites, it is challeng-
ing to preemptively detect coordinated attacks across sites
as illustrated in our motivating example. We plan to work
with peer sites to simulate coordinated attacks, i.e., attacks
that occur at the same time at multiple sites to achieve the
overarching attack goals. We anticipate two main challenges
in alert sharing. The first is using redundancy to ensure the
timely arrival (availability [51,61,62]) of the shared alerts un-
der a stronger threat model. For example, man-in-the-middle
attackers might deliberately prevent or delay critical alerts

4www.grid.ncsa.illinois.edu/ssh

from being shared or malicious insiders might intentionally
share irrelevant alerts in mimicry attacks. The second is that
of ensuring the immutability of stored and shared alerts for
forensic analysis.

Adversarial Evolution and Adaptation. To address the
case in which an attacker may discover our /16 IP space and
avoid targeting it, we will leave the address of the /16 IP
space out of our public dataset. In the future, we will not
use the /16 IP space exclusively for the honeypot. Instead,
we may start deploying a small number of legitimate servers,
using random IP addresses, in the IP space. These legitimate
computers act as canaries and allow us to assess how they
perform under heavy attack related traffic.

8 Related Work
This section discusses prior work in honeypot design, secu-

rity auditing, black hole router, and alert sharing networks.
Honeypots. HoneyStat has been deployed for local worm

detection. However, 1) it is deployed on local networks
whereas ours is deployed on NCSA’s global peer-to-peer shar-
ing infrastructure; and 2) it only carries out logit analysis
for worm detection, and thus lacks a mechanism for protect-
ing inner network infrastructure from honeypot intrusions,
while NCSA applies auditing tools to preempt compromises
based on honeypot intrusion data [63]. John et al. [64] de-
ployed Web honeypots in a university network, which at-
tracted ∼ 44,000 attacker visits from ∼ 6,000 distinct IPs,
which inspired NCSA’s honeypot deployment in a similar
campus deployment environment. However, NCSA’s hon-
eypot traffic is at least 1,000 times greater. With that rela-
tively limited attack surface, John et al.’s honeypots rely on
other Web pages with high page ranks and dynamic linking
of search engines to attract up-to-date or zero-day attacks.
Therefore, our non-interactive honeypot is scalable: it can
handle an order of magnitude more attack attempts compared
to interactive honeypot such as Kippo [34], which is also
more expensive to maintain and pose an unnecessary risk to
our system. Such interactive honeypots allow attackers to in-
teract with a shell: thus, they require more resources and need
careful network configuration (blocking of new outgoing con-
nections) to isolate attackers. There have also been studies in
VoIP honeypots [65,66]. The main limitation of [65] is a lack
of decisions in reaction to attackers, compared to the NCSA
honeypot’s deployment of real-time decision infrastructure
based on the collected data from the honeypots. [66] has only
been implemented in a preliminary stage; it has not been
deployed on a large scale, and its honeypots do not maintain
interactions with the rest of the security components, leading
to delayed enforcement of security policies in response to
real-time dynamic attacks.

Provos [21] presented a framework that simulates virtual
honeypots and Vrable et al. [22] built a prototype of vir-
tual honeyfarm system, both in opposition to a physical one,
with Varable’s honeyfarm system motivated NCSA’s honey-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 677

pot deployment. Provo’s work was driven by the IP space
limitations placed on traditional physical honeypots, and that
is not an issue for the NCSA honeypot. [67] looked into the
effectiveness of building deceptive honeypots within a virtual
environment that uses Linux containers. However, [11] illus-
trated the limitations of these virtual honeypots from both
attackers, and system architecture’s points of view. 1) From
the attackers’ viewpoint, there is ease of detection without any
privileges; and 2) in the underlying system architecture, there
were fundamental flaws in virtualization. Other honeypots in
the literature have inspired our design decisions. However,
their source codes are typically not available for immediate
use.

Security auditing. In [68], the testbed is embedded in
the production network, while our system runs with the real
production traffic that includes a mixture of attack and benign
traffic in a large-scale deployment: [69] emulated a wider
range of virtual topologies, not just physical hardware but
only to the extent of more than a thousand virtual nodes; the
NCSA honeypot scales well, such that one physical server
takes all the loads of attacks from 65,536 virtualized servers.
It will likely be beneficial to apply the automated network
monitoring tools [70, 71] to prioritize and customize the net-
work flows [72] of the honeypot data; and to extend tech-
niques in [73] to formally verify authentic SSH login flows.

Routing malicious traffic. Yu et al. proposed a precise
network instrumentation framework to mitigate malicious traf-
fic, e.g., by forcing the user to change the default password
of an IoT device [70] instead of redirecting the user to the
null route as it is done in our approach. Wu et al. presented a
packet filter [74] with low filter update latency and high-speed
packet processing. 007 is an application deployed to diagnose,
detect, and trace source causes for TCP connection packet
drops [75]. APUNet integrated GPU in APU platforms to ac-
celerate packet processing in network applications [76], while,
on the other hand, Netmap enables rapid network packet de-
livery without requiring for customized hardware or modified
applications [77]. Sarma et al. broadened the availability
of hardware switches for network resource allocation algo-
rithms, thus making the implementations of network protocols
more flexible [78]. To achieve easier and more efficient net-
work flow processing development in stateful middleboxes,
Jamshed et al. designed and implemented a reusable network
stack [79].

Network auditors or scanners. Compared to ZMap, for
which analyses of new protocols were performed on random
samples [23], NCSA’s honeypot has adopted a more intelli-
gent scanning methodology that subscribes to new protocols
logged by IDS to incrementally discover newly added SSH
servers, therefore lowering the burden of probe traffic on the
production network.

Alert-sharing network. R-cisc is a cybersecurity sharing
center for retail ecosystem [26]. However, unlike NCSA’s
sharing network, that sharing center shares security incident

data among retail sites in a manner that is neither real-time
nor encrypted. The publish of new threats in Facebook Threa-
tExchange [80] is not automated. However, it is promising to
integrate NCSA’s alert-sharing network with Facebook Threa-
tExchange and IBM X-Force to make use of the APIs for
threat intelligence sharing [80, 81].

9 Conclusion
This paper presents the operational experiences with the

proposed framework at the National Center for Supercomput-
ing Applications. Our experience over 463 days shows that
CAUDIT successfully blocks an average of 57 million attack
attempts on a daily basis by using the proposed BHR. This
represents a 66× reduction in the number of SSH attempts
compared to the daily average, and has reduced 78% of the
traffic to the internal network-security-monitoring infrastruc-
ture. We posit that the measurements and insights presented
in this paper can be used to propose new research directions
in IDS systems deployed in adversarial environments.

10 Code and Data Availability
We have open-sourced CAUDIT’s implementation and its

dataset at https://pmcao.github.io/caudit.

Acknowledgement
We thank the NCSA security team, students participated

in the SDAIA project, and the partnering sites for supporting
CAUDIT operational deployment; DEPEND group members,
anonymous reviewers, and our shepherd, Prof. Vyas Sekar,
for providing valuable feedback; and Ms. Jenny Applequist
for proofreading. This material is based upon work sup-
ported by the National Science Foundation under Grant No
1535070,1547249. The opinions, findings, and conclusions
stated herein are those of the authors and do not necessarily
reflect those of the sponsors.

678 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://pmcao.github.io/caudit

References
[1] Theophilus Benson, Aditya Akella, and David A Maltz.

Unraveling the complexity of network management. In
NSDI, pages 335–348, 2009.

[2] Taous Madi, Suryadipta Majumdar, Yushun Wang, Yosr
Jarraya, Makan Pourzandi, and Lingyu Wang. Auditing
security compliance of the virtualized infrastructure in
the cloud: Application to openstack. In Proceedings
of the Sixth ACM Conference on Data and Application
Security and Privacy, pages 195–206. ACM, 2016.

[3] Nicholas DeMarinis, Stefanie Tellex, Vasileios Ke-
merlis, George Konidaris, and Rodrigo Fonseca. Scan-
ning the internet for ros: A view of security in robotics
research. arXiv preprint arXiv:1808.03322, 2018.

[4] Tianlong Yu, Vyas Sekar, Srinivasan Seshan, Yuvraj
Agarwal, and Chenren Xu. Handling a trillion (unfix-
able) flaws on a billion devices: Rethinking network
security for the internet-of-things. In Proceedings of the
14th ACM Workshop on Hot Topics in Networks, page 5.
ACM, 2015.

[5] Have i been pwned, 2018. https://haveibeenpwned.
com/.

[6] Phuong Cao, Eric Badger, Zbigniew Kalbarczyk, Rav-
ishankar Iyer, and Adam Slagell. Preemptive intrusion
detection: Theoretical framework and real-world mea-
surements. In Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security, page 5. ACM,
2015.

[7] You’re already compromised: Exposing ssh as an attack
vector, 2016. https://www.cisco.com/c/en/us/
about/security-center/ssh-honeypot.html.

[8] Drawing the foul: Operation of a ddos honeypot,
2017. https://www.usenix.org/conference/
enigma2017/summit-program/presentation/
drawing-foul-operation-ddos-honeypot.

[9] Ping Wang, Lei Wu, Ryan Cunningham, and Cliff C
Zou. Honeypot detection in advanced botnet attacks.
International Journal of Information and Computer Se-
curity, 4(1):30–51, 2010.

[10] Payas Gupta, Bharat Srinivasan, Vijay Balasubra-
maniyan, and Mustaque Ahamad. Phoneypot: Data-
driven understanding of telephony threats. In NDSS,
2015.

[11] Maximillian Dornseif, Thorsten Holz, and Und Sven
Müller. Honeypots and limitations of deception. 2005.

[12] Vladimir B Oliveira, Zair Abdelouahab, Denivaldo
Lopes, Mario H Santos, and Valéria P Fernandes. Hon-
eypotlabsac: a virtual honeypot framework for android.
International Journal of Computer Networks & Commu-
nications, 5(4):159, 2013.

[13] Todd Hoff. Netflix: Continually test by failing servers
with chaos monkey, 2010.

[14] Yury Izrailevsky and Ariel Tseitlin. The netflix simian
army. The Netflix Tech Blog, July, 2011.

[15] Catello Di Martino, Ugo Giordano, Nishok Mo-
hanasamy, Stefano Russo, and Marina Thottan. In pro-
duction performance testing of sdn control plane for
telecom operators. In 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks (DSN), pages 642–653. IEEE, 2018.

[16] The bro network security monitor. 2018. https://
bro.org.

[17] Yu-Ming Ke, Chih-Wei Chen, Hsu-Chun Hsiao, Adrian
Perrig, and Vyas Sekar. Cicadas: congesting the internet
with coordinated and decentralized pulsating attacks. In
Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pages 699–
710. ACM, 2016.

[18] Mobin Javed and Vern Paxson. Detecting stealthy, dis-
tributed ssh brute-forcing. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security, pages 85–96. ACM, 2013.

[19] Ryan J. McCaughey. Deception using an ssh honeypot.

[20] D M’raihi, M Bellare, F Hoornaert, D Naccache, and
O Ranen. Hotp: An hmac-based one-time password
algorithm. Technical report, 2005.

[21] Niels Provos et al. A virtual honeypot framework. In
USENIX Security Symposium, volume 173, pages 1–14,
2004.

[22] Michael Vrable, Justin Ma, Jay Chen, David Moore,
Erik Vandekieft, Alex C Snoeren, Geoffrey M Voelker,
and Stefan Savage. Scalability, fidelity, and containment
in the potemkin virtual honeyfarm. In ACM SIGOPS
Operating Systems Review, volume 39, pages 148–162.
ACM, 2005.

[23] Zakir Durumeric, Eric Wustrow, and J Alex Halderman.
Zmap: Fast internet-wide scanning and its security ap-
plications. In USENIX Security Symposium, volume 8,
pages 47–53, 2013.

[24] Warren Kumari and Danny McPherson. Remote trig-
gered black hole filtering with unicast reverse path for-
warding (urpf). Technical report, 2009.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 679

https://haveibeenpwned.com/
https://haveibeenpwned.com/
https://www.cisco.com/c/en/us/about/security-center/ssh-honeypot.html
https://www.cisco.com/c/en/us/about/security-center/ssh-honeypot.html
https://www.usenix.org/conference/enigma2017/summit-program/presentation/drawing-foul-operation-ddos-honeypot
https://www.usenix.org/conference/enigma2017/summit-program/presentation/drawing-foul-operation-ddos-honeypot
https://www.usenix.org/conference/enigma2017/summit-program/presentation/drawing-foul-operation-ddos-honeypot
https://bro.org
https://bro.org

[25] Andreas Kuehn and Milton Mueller. Analyzing bug
bounty programs: An institutional perspective on the
economics of software vulnerabilities. 2014.

[26] R-cisc, 2018. https://r-cisc.org/
#homeResources.

[27] Catello Di Martino, Zbigniew Kalbarczyk, Ravis-
hankar K Iyer, Fabio Baccanico, Joseph Fullop, and
William Kramer. Lessons learned from the analysis of
system failures at petascale: The case of blue waters. In
Dependable Systems and Networks (DSN), 2014 44th
Annual IEEE/IFIP International Conference on, pages
610–621. IEEE, 2014.

[28] Nds services. 2018. https://wiki.ncsa.illinois.
edu/display/NDS/NDS+Services.

[29] Manos Antonakakis, Tim April, Michael Bailey, Matt
Bernhard, Elie Bursztein, Jaime Cochran, Zakir Du-
rumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua
Mason, Damian Menscher, Chad Seaman, Nick Sullivan,
Kurt Thomas, and Yi Zhou. Understanding the mirai
botnet. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1093–1110, Vancouver, BC, 2017.
USENIX Association.

[30] Fermi national accelerator laboratory, 2018. http://
www.fnal.gov/.

[31] Antonio Pecchia, Aashish Sharma, Zbigniew Kalbar-
czyk, Domenico Cotroneo, and Ravishankar K Iyer.
Identifying compromised users in shared computing in-
frastructures: A data-driven bayesian network approach.
In 2011 30th IEEE International Symposium on Reliable
Distributed Systems, pages 127–136. IEEE, 2011.

[32] Aashish Sharma, Zbigniew Kalbarczyk, James Barlow,
and Ravishankar Iyer. Analysis of security data from a
large computing organization. 2011.

[33] Iforge cluster, 2018. http://www.ncsa.illinois.
edu/industry/iforge.

[34] Kippo - ssh honeypot, 2016. https://github.com/
desaster/kippo.

[35] Cláudia J Barenco Abbas, L Javier García Villalba, and
Victoria López López. Implementation and attacks anal-
ysis of a honeypot. In International Conference on Com-
putational Science and Its Applications, pages 489–502.
Springer, 2007.

[36] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-
mar, Bob Lantz, and Nick McKeown. Reproducible
network experiments using container-based emulation.
In Proceedings of the 8th international conference on

Emerging networking experiments and technologies,
pages 253–264. ACM, 2012.

[37] Phuong Cao, Eric C Badger, Zbigniew T Kalbarczyk,
and Ravishankar K Iyer. A framework for generation,
replay, and analysis of real-world attack variants. In
Proceedings of the Symposium and Bootcamp on the
Science of Security, pages 28–37. ACM, 2016.

[38] Cuong Pham, Zachary J Estrada, Phuong Cao, Zbigniew
Kalbarczyk, and Ravishankar K Iyer. Building reliable
and secure virtual machines using architectural invari-
ants. IEEE Security & Privacy, 12(5):82–85, 2014.

[39] Cuong Pham, Zachary Estrada, Phuong Cao, Zbigniew
Kalbarczyk, and Ravishankar K Iyer. Reliability and
security monitoring of virtual machines using hardware
architectural invariants. In Dependable Systems and
Networks (DSN), 2014 44th Annual IEEE/IFIP Interna-
tional Conference on, pages 13–24. IEEE, 2014.

[40] Robert P Goldberg. Architecture of virtual machines.
In Proceedings of the workshop on virtual computer
systems, pages 74–112. ACM, 1973.

[41] man page for passwd, 2018. https://www.unix.com/
man-page/linux/1/passwd/.

[42] Ssh server auditing, 2018. https://github.com/
arthepsy/ssh-audit.

[43] Gordon Fyodor Lyon. Nmap network scanning: The
official Nmap project guide to network discovery and
security scanning. Insecure, 2009.

[44] Aashish Sharma, Zbigniew Kalbarczyk, R Iyer, and
James Barlow. Analysis of credential stealing attacks in
an open networked environment. In Network and System
Security (NSS), 2010 4th International Conference on,
pages 144–151. IEEE, 2010.

[45] fail2ban, 2018. https://www.fail2ban.org/wiki/
index.php/Main_Page.

[46] Liang Zhang, David Choffnes, Dave Levin, Tudor Du-
mitras, Alan Mislove, Aaron Schulman, and Christo
Wilson. Analysis of ssl certificate reissues and revoca-
tions in the wake of heartbleed. In Proceedings of the
2014 Conference on Internet Measurement Conference,
pages 489–502. ACM, 2014.

[47] Bpf and xdp reference guide, 2018. https://cilium.
readthedocs.io/en/latest/bpf/.

[48] Gianluca Insolvibile. Kernel korner: Inside the linux
packet filter. Linux journal, 2002(94):7, 2002.

680 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://r-cisc.org/#homeResources
https://r-cisc.org/#homeResources
https://wiki.ncsa.illinois.edu/display/NDS/NDS+Services
https://wiki.ncsa.illinois.edu/display/NDS/NDS+Services
http://www.fnal.gov/
http://www.fnal.gov/
http://www.ncsa.illinois.edu/industry/iforge
http://www.ncsa.illinois.edu/industry/iforge
https://github.com/desaster/kippo
https://github.com/desaster/kippo
https://www.unix.com/man-page/linux/1/passwd/
https://www.unix.com/man-page/linux/1/passwd/
https://github.com/arthepsy/ssh-audit
https://github.com/arthepsy/ssh-audit
https://www.fail2ban.org/wiki/index.php/Main_Page
https://www.fail2ban.org/wiki/index.php/Main_Page
https://cilium.readthedocs.io/en/latest/bpf/
https://cilium.readthedocs.io/en/latest/bpf/

[49] Recommendation for pair-wise key establish-
ment schemes using discrete logarithm cryp-
tography, 2018. https://csrc.nist.gov/
CSRC/media/Publications/sp/800-56a/rev-
3/draft/documents/sp800-56ar3-draft.pdf.

[50] Pieter Hintjens. ZeroMQ: messaging for many applica-
tions. " O’Reilly Media, Inc.", 2013.

[51] Sushant Jain, Michael Demmer, Rabin Patra, and Kevin
Fall. Using redundancy to cope with failures in a delay
tolerant network. In ACM SIGCOMM Computer Com-
munication Review, volume 35, pages 109–120. ACM,
2005.

[52] Joe DeBlasio, Stefan Savage, Geoffrey M Voelker, and
Alex C Snoeren. Tripwire: Inferring internet site com-
promise. In Proceedings of the 2017 Internet Measure-
ment Conference, pages 341–354. ACM, 2017.

[53] Phuong Cao, Hongyang Li, Klara Nahrstedt, Zbigniew
Kalbarczyk, Ravishankar Iyer, and Adam J Slagell. Per-
sonalized password guessing: a new security threat. In
Proceedings of the 2014 Symposium and Bootcamp on
the Science of Security, page 22. ACM, 2014.

[54] Laurens van der Maaten and Geoffrey Hinton. Visu-
alizing data using t-sne. Journal of machine learning
research, 9(Nov):2579–2605, 2008.

[55] Censys, 2018. https://censys.io/.

[56] Ssh bad keys, 2017. https://github.com/rapid7/
ssh-badkeys.

[57] Verizon RISK Team and R Team. 2018 data breach
investigations report. 2018.

[58] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Review,
44(3):87–95, 2014.

[59] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
univmon. In Proceedings of the 2016 ACM SIGCOMM
Conference, pages 101–114. ACM, 2016.

[60] Seyed Kaveh Fayaz, Yoshiaki Tobioka, Vyas Sekar, and
Michael Bailey. Bohatei: Flexible and elastic ddos
defense.

[61] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan
Ford, Michio Honda, Fabien Duchene, Olivier Bonaven-
ture, and Mark Handley. How hard can it be? de-
signing and implementing a deployable multipath tcp.

In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 29–
29. USENIX Association, 2012.

[62] Cuong Pham, Phuong Cao, Zbigniew Kalbarczyk, and
Ravishankar K Iyer. Toward a high availability cloud:
Techniques and challenges. In Dependable Systems and
Networks Workshops (DSN-W), 2012 IEEE/IFIP 42nd
International Conference on, pages 1–6. IEEE, 2012.

[63] David Dagon, Xinzhou Qin, Guofei Gu, Wenke Lee, Ju-
lian Grizzard, John Levine, and Henry Owen. Honeystat:
Local worm detection using honeypots. In International
Workshop on Recent Advances in Intrusion Detection,
pages 39–58. Springer, 2004.

[64] John P John, Fang Yu, Yinglian Xie, Arvind Krishna-
murthy, and Martín Abadi. Heat-seeking honeypots:
design and experience. In Proceedings of the 20th inter-
national conference on World wide web, pages 207–216.
ACM, 2011.

[65] Mohamed Nassar, Radu State, and Olivier Festor. Voip
honeypot architecture. In 2007 10th IFIP/IEEE Interna-
tional Symposium on Integrated Network Management,
pages 109–118. IEEE, 2007.

[66] Rodrigo Do Carmo, Mohamed Nassar, and Olivier Fes-
tor. Artemisa: An open-source honeypot back-end to
support security in voip domains. In Integrated Net-
work Management (IM), 2011 IFIP/IEEE International
Symposium on, pages 361–368. IEEE, 2011.

[67] Alexander Kedrowitsch, Danfeng Daphne Yao, Gang
Wang, and Kirk Cameron. A first look: Using linux
containers for deceptive honeypots. In Proceedings of
the 2017 Workshop on Automated Decision Making for
Active Cyber Defense, pages 15–22. ACM, 2017.

[68] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Ap-
penzeller, Martin Casado, Nick McKeown, and Guru M
Parulkar. Can the production network be the testbed?
In OSDI, volume 10, pages 1–6, 2010.

[69] M Hibler R Ricci L Stoller, Jonathon Duerig, Shashi
Guruprasad, Tim Stack, Kirk Webb, and Jay Lepreau.
Large-scale virtualization in the emulab network testbed.
In USENIX Annual Technical Conference, Boston, MA,
2008.

[70] Tianlong Yu, Seyed Kaveh Fayaz, Michael P Collins,
Vyas Sekar, and Srinivasan Seshan. Psi: Precise security
instrumentation for enterprise networks. 2017.

[71] Michael Golightly and Jack Brassil. Automating net-
work monitoring on experimental testbeds. In CSET,
2011.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 681

https://csrc.nist.gov/CSRC/media/Publications/sp/800-56a/rev-3/draft/documents/sp800-56ar3-draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-56a/rev-3/draft/documents/sp800-56ar3-draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-56a/rev-3/draft/documents/sp800-56ar3-draft.pdf
https://censys.io/
https://github.com/rapid7/ssh-badkeys
https://github.com/rapid7/ssh-badkeys

[72] Kimberly C. Claffy, H-W Braun, and George C. Polyzos.
A parameterizable methodology for internet traffic flow
profiling. IEEE Journal on selected areas in communi-
cations, 13(8):1481–1494, 1995.

[73] Shuo Chen, Matt McCutchen, Phuong Cao, Shaz
Qadeer, and Ravishankar K Iyer. Svauth–a single-sign-
on integration solution with runtime verification. In In-
ternational Conference on Runtime Verification, pages
349–358. Springer, 2017.

[74] Zhenyu Wu, Mengjun Xie, and Haining Wang. Swift:
A fast dynamic packet filter. In NSDI, volume 8, pages
279–292, 2008.

[75] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hingqiang Liu, Jitu Padhye, Boon Thau Loo, and Ge-
off Outhred. 007: Democratically finding the cause of
packet drops. In 15th {USENIX} Symposium on Net-
worked Systems Design and Implementation ({NSDI}
18). USENIX Association, 2018.

[76] Younghwan Go, Muhammad Asim Jamshed, Young-
Gyoun Moon, Changho Hwang, and KyoungSoo Park.
Apunet: Revitalizing gpu as packet processing accelera-
tor. In NSDI, pages 83–96, 2017.

[77] Luigi Rizzo. Netmap: a novel framework for fast packet
i/o. In 21st USENIX Security Symposium (USENIX
Security 12), pages 101–112, 2012.

[78] Naveen Kr Sharma, Antoine Kaufmann, Thomas E An-
derson, Arvind Krishnamurthy, Jacob Nelson, and Si-
mon Peter. Evaluating the power of flexible packet
processing for network resource allocation. In NSDI,
pages 67–82, 2017.

[79] Muhammad Asim Jamshed, YoungGyoun Moon,
Donghwi Kim, Dongsu Han, and KyoungSoo Park. mos:
A reusable networking stack for flow monitoring mid-
dleboxes. In NSDI, pages 113–129, 2017.

[80] Getting started with threatexchange, 2018. https:
//developers.facebook.com/docs/threat-
exchange/getting-started/v3.1.

[81] Ibm x-force, 2018. https://www.ibm.com/
security/xforce.

682 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://developers.facebook.com/docs/threat-exchange/getting-started/v3.1
https://developers.facebook.com/docs/threat-exchange/getting-started/v3.1
https://developers.facebook.com/docs/threat-exchange/getting-started/v3.1
https://www.ibm.com/security/xforce
https://www.ibm.com/security/xforce

	Introduction
	Background
	Daily operations at NCSA
	System model
	Threat model

	Motivation
	A Motivating Example

	System Architecture
	SSH authentication logger (SAL)
	SSH credential auditor (SCA)
	Black hole router (BHR)
	Alert-sharing Network (ASN)

	Measurement Results
	Dataset
	Attack sources
	SSH clients in attacks
	Attacks using personalized passwords
	Attack attempts using SSH keys
	Impact of attacks

	Evaluation
	Gradual deployment of CAUDIT in NCSA's production network
	Overall impact of our system
	Honeypot
	Black Hole Router
	SSH credential auditor
	Alert-sharing network

	Discussions
	Related Work
	Conclusion
	Code and Data Availability

