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Symphony: A Framework for ML in Systems

* A new framework for management of large- AX  Accelerated Probabilistic Programming System
scale computers using ML User Program .
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Changing Landscape of Computing

Emerging applications drive need for more compute

@S =

Autonomous Agents Personalized Medicine

SecOpéﬂalytics

Accelerators are becoming first class citizens in datacenter deployments

GPGPUs FPGAs [EC2, Azure] ASICs [TPU, IPU etc.]

What’s missing? How & When do you take advantage of heterogeneous
hardware without painstakingly deriving new heuristics? — ML to the rescue

» Today done largely by static policies (heuristics)
* How to make use of dynamic and about Apps/Systems?



Dynamic Information is Key to Resource Management

Latent Resource Contention in CPUs

Latent Resource Contention in

o Accelerators
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Symphony: Execution Overview
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Symphony: Bayesian + Deep Learning Models

Resource Management Problem:

BN Model

» State Estimation: Find the important resources and current utilizations
 Decision: Find a packing that optimally utilizes resources
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BN Model: Capture uncertainty in state
estimation
* Nondeterministic sampling + delays
* Measurement Error

NN Model: Capture aspects of optimization
* Graph Network: Capture DFG & System
Topology embeddings
* LSTM + AC: Capture time varying
information

Trained by RL to minimize makespan



Modeling Uncertainty in Sampled Performance Data

Problem: Measurements of performance counters are noisy (as much as 40%)

Traditional Solution (Offline Variance Reduction) Our Solution (Generative Model of Error)

* Used primarily for offline analysis like profiling— ) .
completely unusable! Key Insight: Different perf counters are

: interrelated based on system architecture
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Bayesian Network Model
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* Scalable, general & works for real processors
* x86 (Intel, AMD Zen), ppc64 (IBM), ARM (aarch64 - subset)

* BN automatically automatically from per p-arch listing in Linux Source Tree
e Contributed by vendors to Linux



Results: Keep the Abstractions and Get Performance Too

Outperforms Paragon by 32% (at 99*"%ile) 63% of kernels execute with isolated

Performance within 6% of oracle performance, remaining with <20%
schedule (at 99t"%ile) performance loss
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No Free Lunch: Scheduler Latency Can Negate Gains

Hack: Batching Real Solution: Reduce Latency to a point

Insight: Amortize cost of scheduling over batches where latency becomes irrelevant
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* Outer loop: Can be prohibitively expensive to calculate the ideal batch size
* BN training time dominates in cases in the tail



Sampling-based Back Propagation for Bayesian Networks

Fr(be; ©) Can be recursively expanded
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Backpropagation requires calculating its gradient
V@ﬁﬁL = V@ﬁf(p) + V@ﬁy(n) p(X)

v@Bth ???

Inference procedure might not be differentiable
* Requires calculation of an integral over
domain of variable

This is algorithmically expensive (exponentially large) Our approximation can do this in polynomial time




Symphony: Model + Approximations + Acceleration

Approximations reduce latencies (12x in tail) and improve training times
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Summary:

* Model enables capturing system state and aleatoric uncertainty
* Approximations enable low-latency operation




