IL ILLINOIS Subho S. Banerjee*, Saurabh Jha*, Zbigniew T.
CSL | Coordinated Kalbarczyk, Ravishankar K. lyer+*

Science Lab *Computer Science *Electrical and Computer Engineering
COLLEGE OF ENGINEERING

Inductive-bias-based Reinforcement
Learning for Efficient Schedules in
Heterogeneous Clusters

Symphony: A Framework for ML in Systems

* A new framework for management of large- AX Accelerated Probabilistic Programming System
scale computers using ML User Program .
* Encode “systems knowledge” as inductive __ | P\based Decision Policy
bias - e C e ~
> S
* Combine Bayesian model with Deep Learning i &
>
i Broader gOaISI o Probabilistic Latent System State Inference 0_9?
* Performance (Scheduling, SLO) o — o I I
° Resilience (Errors’ Failures, AttaCkS) § Eg;nvj::dge Resource Utilization Failur:s‘Detection Intrusion Detection
* This paper @ Data Collection Framework
° Model: Scheduling accelerated Workloads | Hardware Counters || (ON) MonitorS/PFObeS || Network/App Tracing |

* Training Algorithm: Sampling based
approximations for backprop in Bayesian o
Models CPUs

GPUs FPGAs HCAs Reliability, Security &
Safety Assessment

* Uncertainty: Dealing with errored telemetry N /j
data @v

App: Neurology Application: Accelerated Computational Genomics

App: SecOps

App: AVs

Changing Landscape of Computing

Emerging applications drive need for more compute

@S =

Autonomous Agents Personalized Medicine

SecOpéﬂalytics

Accelerators are becoming first class citizens in datacenter deployments

GPGPUs FPGAs [EC2, Azure] ASICs [TPU, IPU etc.]

What’s missing? How & When do you take advantage of heterogeneous
hardware without painstakingly deriving new heuristics? — ML to the rescue

» Today done largely by static policies (heuristics)
* How to make use of dynamic and about Apps/Systems?

Dynamic Information is Key to Resource Management

Latent Resource Contention in CPUs

Latent Resource Contention in

o Accelerators
1! 2 2 _/ R R
T 0958 = 10 :] _Contention —H— :
-1 09 & 6 ; R [fow : : :
| - Q - o d N e e 20T
Hosss £ N /[\\
08 3 % L[| etV
075 3 |-
S S rrer o
0.7 § o2 52
0.65 :x 28 2|0 2|2 2|4 2|6 2|8 220 222
06 =
3 Message Size (Bytes)
@)
Shared resource contention reduces PCle bandwidth impacts performance by as

performance by as much as 40%

much as 50%

Symphony: Execution Overview

User DFG

——]

CIEC]

CICIC]

Sensor

%-»% FPGA

Sensor

CICIC]

Trajectory Buffer

Scheduler
i'"""""“““"'"““' N
' | Perf + PAPI
' State Management
' (User)

!

: lRingbuffer

T

: Update
|

| [ﬁ

|

: aTaraYa

" %ﬁtﬁ? Scheduling

! fﬂé;ig##@ Decision Model

: Topc?lgjgy Scheduling Policy
: Information

: Safer No | Enqueue
: are: Update
| Yes

|

|

|

|

|

|

|

____________________________ |
¢ (Kernel, Queue)

Sensor

HCA
Y
|| Perf/Driver
(Kernel)
4

Symphony: Bayesian + Deep Learning Models

Resource Management Problem:

BN Model

» State Estimation: Find the important resources and current utilizations
 Decision: Find a packing that optimally utilizes resources

— L
i Resource Graph

Bayesian

Inference Utilization

A

Perf. Counter
Measurements

|
! System |
| ' .
| Topology 1 ~ Critic
FC
”| Network » :
= H
Graph =
Network FC
Actor
: Action
D <
o0

Computer Systems

BN Model: Capture uncertainty in state
estimation
* Nondeterministic sampling + delays
* Measurement Error

NN Model: Capture aspects of optimization
* Graph Network: Capture DFG & System
Topology embeddings
* LSTM + AC: Capture time varying
information

Trained by RL to minimize makespan

Modeling Uncertainty in Sampled Performance Data

Problem: Measurements of performance counters are noisy (as much as 40%)

Traditional Solution (Offline Variance Reduction) Our Solution (Generative Model of Error)

* Used primarily for offline analysis like profiling—) .
completely unusable! Key Insight: Different perf counters are

: interrelated based on system architecture

: i
un 1 !
—t—tl—t—f—t > Perf Counters: Memory BW,LLC Misses

[
: : Time
Run 2 : i LLC Misses X Cacheline Size
. I I T
: [I Time
I I
Runn I :I 1 I: t e 100
1 | A 100 - E;g*f o0
[i . ; > 80 - *,;, w2 I 8o
; Time & TN I
A (a8)] om ,g&? 1 70
= > wr=m————mEmmEg= |00
v » Q Y e - 50
= S a0 LuEEM L [
b = 2 P30
3 20 = ST 1 - 20
Q : - 10
U T T T 1 v+ O
> 20 40 60 80 100
> LLCM LLC Misses
6

Value

Bayesian Network Model

ao(C}
Cl~C; + MStudent(l/ =N —-1)

---------------- CPU Util. Q Interconnect Util. O DMA Util.
Measured Values : A (Directly Attached)
' Core #Cores #Sockets

A
(noisy) ! Util D D
-------------- / DMA Util. | Processing
(Switched) Fabric
of A
#Threads PCR Util. —04——0

Hops Issued PCS Util.
Backend

Util. | D

Divided] Mem BW Util. Memory
; System
FP Arith. DRAM Lat-
Util.
. . . ' .
Utilizations! ! L S foche Ut
(inferred)] ! O Porft {til. @ DRAM BW ., D
| I FP Scalar FP Vector| *

------------------------------- L . ® OQutstanding System

True Values

* Scalable, general & works for real processors
* x86 (Intel, AMD Zen), ppc64 (IBM), ARM (aarch64 - subset)

* BN automatically automatically from per p-arch listing in Linux Source Tree
e Contributed by vendors to Linux

Results: Keep the Abstractions and Get Performance Too

Outperforms Paragon by 32% (at 99*"%ile) 63% of kernels execute with isolated

Performance within 6% of oracle performance, remaining with <20%
schedule (at 99t"%ile) performance loss

Symphony —»— Paragon —8— o B 10-20% 3

v
Graphene —@®— Sparrow —+— Pé) o0-10% =3 >20% =3
-+ 1 cee
3
O 0.8
LL Dq_) 0.6
) c 04
U
O oo
)
'8 ’ N e o oY
— OF (@™ OV o™ AC
S (’3@36\‘?\0 O
O 02 04 06 08 1 < S
Scheduler

Oracle Normalized Runtime

No Free Lunch: Scheduler Latency Can Negate Gains

Hack: Batching Real Solution: Reduce Latency to a point

Insight: Amortize cost of scheduling over batches where latency becomes irrelevant

99%-ile Task Latency

— Scheduler Latency ML Prediction Horizon
e 1
v
E 1
=
% 0.1 L
o ()
. 0.01 O
&
| -
O 0.001
Z
U 0.0001
U 1072 107 10° 10"
o] 1 10 100 1000
s_) Scheduler Latency (s
O Batch Size (Tasks) Y (5)

* Outer loop: Can be prohibitively expensive to calculate the ideal batch size
* BN training time dominates in cases in the tail

Sampling-based Back Propagation for Bayesian Networks

Fr(be; ©) Can be recursively expanded
A Actor |- b [T T T T !
@t—1—> |nference | bt ’___________-____jr_(_C_Lt_‘ 2 Vo sv\ox Pr(p(X) =yil¢ = a)i
Or—»| Procedure |«=X — veo (YT T T
. —>V (0t
Y T g fv(bs; Ov)
BN Model S Veopn\ox Pr(X = z|{ = a)

Pr(st, at—1, Ot; @BN)

Backpropagation requires calculating its gradient
V@ﬁﬁL = V@ﬁf(p) + V@ﬁy(n) p(X)

v@Bth ???

Inference procedure might not be differentiable
* Requires calculation of an integral over
domain of variable

This is algorithmically expensive (exponentially large) Our approximation can do this in polynomial time

Symphony: Model + Approximations + Acceleration

Approximations reduce latencies (12x in tail) and improve training times

Symphony (All Opt) ——

o L Symphony (No Opt) —8—
U RNN =—@—
0.8 C
0.7 O 1
L 0 L 0.9
2 : CI>J 0.8
U 0'5 : : : ° O 0'7
0.4g § EE a 0.6
03 Original —%— " S 2
0.2 §-* Samp. + Acc. —@&— El o4
©
()
=

0.1 03 A L4 0 0
10-2 10—1 10O 101 100 1000
Scheduler Latency (s) Training Time (hours)
Summary:

* Model enables capturing system state and aleatoric uncertainty
* Approximations enable low-latency operation

