

Subho S. Banerjee*, Saurabh Jha*, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer**

*Computer Science

*Electrical and Computer Engineering

Inductive-bias-based Reinforcement Learning for Efficient Schedules in Heterogeneous Clusters

Symphony: A Framework for ML in Systems

- A new framework for management of largescale computers using ML
 - Encode "systems knowledge" as inductive bias
 - Combine Bayesian model with Deep Learning
- Broader goals:
 - Performance (Scheduling, SLO)
 - Resilience (Errors, Failures, Attacks)
- This paper
 - Model: Scheduling accelerated workloads
 - Uncertainty: Dealing with errored telemetry data
 - Training Algorithm: Sampling based approximations for backprop in Bayesian Models

Changing Landscape of Computing

Emerging applications drive need for more compute

Accelerators are becoming first class citizens in datacenter deployments

GPGPUs

FPGAs [EC2, Azure]

ASICs [TPU, IPU etc.]

What's missing? How & When do you take advantage of heterogeneous hardware without painstakingly deriving new heuristics? – ML to the rescue

- Today done largely by static policies (heuristics)
- How to make use of dynamic and contextual information about Apps/Systems?

Dynamic Information is Key to Resource Management

Latent Resource Contention in CPUs

Shared resource contention reduces performance by as much as 40%

Latent Resource Contention in Accelerators

PCIe bandwidth impacts performance by as much as 50%

Symphony: Execution Overview

Symphony: Bayesian + Deep Learning Models

Resource Management Problem:

- State Estimation: Find the important resources and current utilizations
- Decision: Find a packing that optimally utilizes resources

- BN Model: Capture uncertainty in state estimation
 - Nondeterministic sampling + delays
 - Measurement Error
- NN Model: Capture aspects of optimization
 - Graph Network: Capture DFG & System Topology embeddings
 - LSTM + AC: Capture time varying information
- Trained by RL to minimize makespan

Modeling Uncertainty in Sampled Performance Data

Problem: Measurements of performance counters are noisy (as much as 40%)

Traditional Solution (Offline Variance Reduction)

 Used primarily for offline analysis like profiling completely unusable!

Our Solution (Generative Model of Error)

Key Insight: Different perf counters are interrelated based on system architecture

Perf Counters: *Memory BW*, *LLC Misses*

$$Memory BW = \frac{LLC \ Misses \times Cacheline \ Size}{\delta T}$$

Bayesian Network Model

- Scalable, general & works for real processors
 - x86 (Intel, AMD Zen), ppc64 (IBM), ARM (aarch64 subset)
- BN automatically automatically from per μ-arch listing in Linux Source Tree
 - Contributed by vendors to Linux

Results: Keep the Abstractions and Get Performance Too

Outperforms Paragon by 32% (at 99th%ile)

Performance within 6% of oracle schedule (at 99th%ile)

63% of kernels execute with isolated performance, remaining with <20% performance loss

No Free Lunch: Scheduler Latency Can Negate Gains

Hack: Batching

Insight: Amortize cost of scheduling over batches

Real Solution: Reduce Latency to a point where latency becomes irrelevant

- Outer loop: Can be prohibitively expensive to calculate the ideal batch size
- BN training time dominates in cases in the tail

Sampling-based Back Propagation for Bayesian Networks

Requires calculation of an integral over

domain of variable

This is algorithmically expensive (exponentially large)

Our approximation can do this in polynomial time

Symphony: Model + Approximations + Acceleration

Approximations reduce latencies (12x in tail) and improve training times

Summary:

- Model enables capturing system state and aleatoric uncertainty
- Approximations enable low-latency operation