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Abstract—This paper explores hardware acceleration to signif-
icantly improve the runtime of computing the forward algorithm
on Pair-HMM models, a crucial step in analyzing mutations in
sequenced genomes. We describe 1) the design and evaluation
of a novel accelerator architecture that can efficiently process
real sequence data without performing wasteful work; and
2) aggressive memoization techniques that can significantly reduce
the number of invocations of, and the amount of data transferred
to the accelerator. We describe our demonstration of the design
on a Xilinx Virtex 7 FPGA in an IBM Power8 system. Our
design achieves a 14.85× higher throughput than an 8-core CPU
baseline (that uses SIMD and multi-threading) and a 147.49×
improvement in throughput per unit of energy expended on the
NA12878 sample.

Keywords—Coprocessors, Reconfigurable architectures, Bioin-
formatics, Genomics.

I. INTRODUCTION

An important computation (and a critical bottleneck) in
medical sequence analysis pertaining to the analysis of variants
(mutations) in sequenced genomic data is the forward algo-
rithm [1] (FA) on Pair-Hidden Markov Models [2] (PHMMs)
(see Section II). The FA algorithm, which is generally viewed
as one of the best ways to compute the statistical similarity
between two sequences, is widely used in genomic data
analysis workflows for gene prediction, functional similarity
analysis between protein sequences, multiple sequence align-
ment, phylogeny, and germline- and somatic-variant calling [3].
This paper addresses the problem of accelerating the GATK
HaplotypeCaller [4], a popular and trusted variant calling and
genotyping tool1 that incorporates a PHMM model (described in
Section II-B) and is widely used in clinical settings (e.g, in the
diagnosis of critical diseases like cancer). The FA constitutes
the most computationally complex phase of this application,
accounting for nearly 70-80% of the runtime while processing
human clinical datasets.

The FA algorithm is inherently parallelizable at two levels:
1) at the level of the algorithm, i.e., intra-task parallelism
through the anti-diagonal recurrence pattern in a single FA
execution; 2) at the level of the data, i.e., inter-task parallelism
by computing the independent instances of FA in parallel
throughout the course of analysis. All of the prior efforts to
address this problem [6]–[13] use some form of a systolic array
(SA) architecture. These architectures look to optimize only for
intra-task parallelism; they underutilize on-chip resources and
waste energy when input sizes are not multiples of the number

1It is a part of the Broad Institute Best Practices Workflow [5] for variant-calling.
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Figure 1. Comparing this paper with related work based on throughput (MCUP/s) and
throughput-per-watt (MCUP/s/Watt). Values are normalized to our CPU baseline running
on a Power8 CPU.

of processing elements.2 As a consequence, such designs cannot
efficiently handle realistic data where input sizes (i.e., the
lengths of the query DNA fragments) can vary significantly (see
Section III-A). A common thread of research in this area has
been to utilize control algorithms and data placement strategies
to overcome these shortcomings, thereby leading to increased
algorithmic complexity (for CPUs and GPUs) and larger on-
chip areas for FPGAs [6], [11]–[13].

This paper proposes (in Section III) the design of an accel-
erator for the FA algorithm that overcomes the aforementioned
shortcomings. Unlike previous approaches, we spent our entire
resource budget optimizing for inter-task parallelism (thereby
exploiting the embarrassingly parallel nature of the problem).
Intra-task parallelism is addressed by deep pipelining to
maximize temporal sharing (reuse) of computational resources.
We demonstrate that this design maximizes overall throughput
by optimally using parallelism, and minimzes control related
hazards and stalls. Our accelerator produces a speedup of
14.85× over an 8-core Power8 processor executing the baseline
software implementation, and is 147.49× better in speedup-per-
unit-energy terms. Figure 1 demonstrates this speedup compared
to the related work available on this problem (explained further
in Section VI). In our initial design implementation on an
IBM Power8 system and using an FPGA attached over the
CAPI [14] interface, we observe that the key performance-
limiting factors are 1) latency overhead in accelerator invocation
through the software stack, and 2) redundant computation done

2For example, a 32 processing element systolic array performs 1568 (56 × 28)
unnecessary computations when processing two sequences of lengths 100, and 200.



across multiple unrelated instances of the FA. To alleviate
these performance bottlenecks, we propose (in Section IV) two
additional algorithmic optimizations that span the hardware-
software interface. These techniques prune the inputs of the FA
algorithm and memoize its output 1) to reduce the number of
invocations of the FA kernel, and 2) to reduce the size of the
sequences being compared. The result is an effective reduction
in the amount of data that has to be transferred from the host
to the accelerator to complete a batch of FA computations; this
contributes a further 2.8× improvement in performance.

The main contributions of this paper are as follows:

1) Identifies the performance-limiting issue with today’s
CPU/GPU and systolic-array-based FA accelerators.

2) Presents the architecture of an ensemble of processing
elements that maximize inter-task parallelism and uses ag-
gressive pipelining to address intra-task parallelism, thereby
overcoming the inefficiencies of the SA architectures.

3) Evaluates the proposed design on an FPGA, and couple it
with a coherent interface to the CPUs memory, allowing
work-sharing between the CPU and accelerator.

4) Presents two pruning strategies to memoize results to reduce
the input data-set size as well as the number of invocations
of the FA accelerators.

5) Demonstrates that integration of the accelerator and pruning
techniques into the GATK HaplotypeCaller can accelerate
it by 3.287× (close to the Amdahl’s law limit) over the
baseline CPU implementation.

6) Evaluates the potential impact of several emerging high-
bandwidth memory technologies to alleviate the host-
accelerator bandwidth limitations in PCIe/CAPI.

II. BACKGROUND

A. Pair-HMM Model

PHMM models are instances of Bayesian multinets that
allow for a probabilistic interpretation of the alignment prob-
lem [2]. An alignment models the relationship (homology)
between two sequences via a series of mutations (M ), insertions
(I), and deletions (D) of nucleotides. The FA algorithm of
the PHMM allows the computation of statistical similarity
by considering all alignments between two sequences and
computing the overall alignment probability by summing
over them. These divergent sets of alignments are caused by
evolutionary mutations or sequencing errors. Specifically, given
two sequences S1 and S2 of lengths n and m respectively, the
FA algorithm defines the computation of three probabilities,
fM (i, j), fI(i, j), and fD(i, j). fk(i, j) corresponds to the
combined probability of all alignments for substrings S1[0 : i]
and S2[0 : j] that end in state k ∈ {M, I,D}. The FA algorithm
can be recursively defined as follows:

fM (i, j) = P (ammfM (i− 1, j − 1)+
aimfI(i− 1, j − 1)+
admfD(i− 1, j − 1))

fI(i, j) = amifM (i− 1, j) + aiifI(i− 1, j)
fD(i, j) = amdfM (i, j − 1) + addfD(i, j − 1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)

The parameters amm, aim, adm, ami, aii, amd, add and P are
derived from the values of base-quality scores, map-quality
scores, and the values S1[i] and S2[j]. They represent a statisti-
cal model that jointly describes 1) dependence between adjacent

Algorithm 1 Algorithmic skeleton of the GATK Haplotype-
Caller. The functions EnumerateHaplotypes, Align, and
Genotype are described in [15].

1: alignment ← Aligned set of reads in an active region
2: reference ← Reference genome for an organism in an active region
3: n ← Number of ploids in the organism
4: haplotypes ← EnumerateHaplotypes(alignment.reads)
5: for h ∈ haplotypes do
6: for r ∈ reads do
7: score[h, r] ← PairHMM(h, r)
8: end for
9: end for

10: best haplotypes ← Find n-best haplotypes
11: new align ← ∅
12: for r ∈ alignment.reads do
13: new align ← argmax

h∈bh
Align(r, h)

14: end for
15: variants ← ∅
16: for haplotype ∈ best haplotypes do
17: for loc ∈ haplotype do � Every position in the haplotype
18: variants ← variants ∪ Genotype(new align.atLocus(loc))
19: end for
20: end for
21: return variants

Table I. DISTRIBUTION OF RUNTIME BETWEEN THE PHASES OF ALGORITHM 1 IN

THE GATK HAPLOTYPECALLER FOR THE NA12878 SAMPLE EXECUTING ON THE

HARDWARE CONFIGURATION DESCRIBED IN SECTION V.

Stage Absolute Time (hr) Percentage Time Line Number

Assembly 2.87 13.8 1–4
PHMM FA 14.78 71.1 5–9

Realign + Misc 3.13 15.1 10–21

nucleotides, 2) dependence between hidden and observed
sequences that describes a multi-nucleotide mutation model, a
point mutations model, and 3) sequencing and alignment errors
using an affine gap score model [2]. Patcher et al. [1] describes
the rationale behind using these quality metrics in the PHMM
model to set the a∗ parameters. Finally, the overall similarity
metric between the sequences is the sum of the probabilities
across the states M , I , and D when comparing the entire strings
S1 and S2, i.e., fM (n,m) + fI(n,m) + fD(n,m). Hence,
each FA needs to compute the recursion stated in Equation 1
n × m times. That corresponds to a total computational-
time complexity of O(nm) and a total space complexity of
O(max(n,m)).

B. Germline Variant Calling

In this work, we accelerate the germline variant-calling
and genotyping tool called the GATK HaplotypeCaller (or
GATK), which statistically infers differences between se-
quenced genomes and reference genomes, where reference
genomes represent “average” genome for a population of the
candidate species. The base algorithm of variant calling and
genotyping is straightforward: input sequence fragments are
aligned to a reference sequence, and at every position the
number of mismatches are counted. However, this process is
complicated by the fact that data from sequencing machines
are inherently noisy (from sequencing errors), alignments
are often incorrect (from mapping errors) and polyploidy of
an organism (i.e., there are many copies of a genome per
individual). The PHMM model is applied in this context
to model the aforementioned errors (e.g., sequencing errors,
alignment errors, or mutations) statistically and to assign
sequenced DNA fragments to their corresponding ploids. GATK
computes the variants in a sequenced genome by filtering



Figure 2. Distribution of active region (haplotype)
sizes in a sample of the NA12878 dataset.

Figure 3. Architecture of the data-path and the control-path of the proposed accelerator comprising the 1) host-accelerator
interface over CAPI, and 2) input parsing and load balancing.

the genome into active regions that might contain possible
mutations. Algorithm 1 is then applied in parallel to all active
regions in order to reconstruct haplotypes (using DeBruijn
graphs [16]) for the ploids for each active region. The FA
algorithm is then used to compute the probability that a
sampled sequence fragment originated from a certain haplotype.
These probabilities are used to weight each haplotype to find
a candidate set that might best represent a ploid. Finally,
the reads are realigned to their best haplotype. A count of
the number of mismatches to the haplotype (instead of the
reference) is then used to determine the presence of a variant
and its genotype [17]. GATK uses single-precision floating-
point numbers to compute Equation 1. In the case of an
underflow, double precision floating-point numbers are used to
recompute the result. The FA algorithm constitutes the bulk
(nearly 70%, see Table I) of the runtime of GATK on the
popular NA12878 sample from the GIAB consortium [18],
and as such is a good candidate for acceleration. Banerjee et
al. [15] show that GATK and transitively the FA computation
also forms a significant portion of the runtime of sequencing
data-analytics workflows on modern compute infrastructures
(e.g., clouds and supercomputers).

III. ACCELERATOR

A. Design Philosophy

Based on our analysis of the algorithms and input datasets,
we offer a set of insights that drove our design philosophy:

Insight 1. Diversity in input size. Haplotypes generated by the
HaplotypeCaller show great diversity in size (see Figure 2).
Traditional SA-based architectures for accelerating the FA
algorithm are often not able to handle this diversity effectively
because of the cycles wasted when the size of the recursion
lattice is not divisible by the number of PEs (processing
elements) in the SA, resulting in holes in the processor’s
pipeline. Traditional SA based architectures deal with these
issues by using complicated control mechanisms [11]–[13]
that improve pipeline utilization. CPU- and GPU-based
architectures that exploit SIMD instructions [6], [7] also
experience this issue, albeit to a lesser degree.

Insight 2. Exploiting inter-task parallelism. Systolic array
architectures exploit anti-diagonal parallelism to minimize
latency for a single task. However, given that the FA algo-
rithm itself demonstrates several orders of magnitude greater
parallelism between tasks than within tasks, we believe that
it is more prudent to exploit inter-task parallelism. Such an
approach also addresses the problem of input diversity, as we

can exploit the data-parallel nature of the problem without
data dependencies between PEs. As we show in our results
(Sec. V), the increased data set size needed for inter-task
parallelism does not limit our implementation.

Insight 3. Why not GPUs, and why FPGAs? Insights 1 &
2 discourages the use of GPUs because of its programming
model of lock-step parallelism. Previous efforts of using GPUs
in the context of this problem have successfully extracted intra-
task parallelism at the warp-level. However, input diversity
leads to control divergence when inter-task parallelism is
exploited. In contrast, FPGAs provide the flexibility to build
a processing pipeline that is tailored to the computation at
hand and its input characteristics. We explore the difference
in performance between GPUs and our method in Section VI.
We demonstrate that the our design is unmatched in the
performance-energy trade-off space, however we concede that
the GPU represents a different (and in some cases a preferable)
point on the performance–developer-productivity spectrum.

Figure 3 illustrates the overall design and implementation
of the accelerator. The accelerator is organized as an array
of independent processing elements (PEs; see Section III-B),
which asynchronously pull inputs from the CPU’s memory
space over a cache-coherent CAPI bus (see Section III-D).
Reads and writes to the host processor’s memory space are made
in a streaming fashion to overlap computation of haplotype-read
pairs on the host with the accelerator.

B. Processing Element (PE)

Figure 3 also shows the design of a single PE. The
nucleotide inputs to the PE are encoded as 4-bit unsigned
numbers. These correspond to nucleotides A, C, G, T, and
the ambiguous nucleotides N, -, R, Y, K, M, S and W. The
remaining symbols can be used to accommodate FA on protein
sequences. The quality-score inputs are in their standard ASCII
encoding [2]. These are used to compute the FA algorithm
parameters. Each PE has: 1) a table-lookup based function to
compute floating-point parameter (probability) values from
input quality scores; 2) a data-path consisting of single
precision floating-point adders and multiplier; 3) a scratchpad
buffer to store intermediate values of the fk matrices (where
k ∈ {M, I,D}); and 4) scheduling circuitry that generates
a valid sequence of read-write addresses for the scratchpad
buffer. Using table-lookup allows us to use 8-bit encoding of
quality scores as opposed to their 32-bit floating point encoding
when transferring inputs to the accelerator, thereby reducing IO
bandwidth requirements. Each PE is fed from a BRAM bank
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Figure 4. Schedule of the adders and mulipliers on the datapath illustrated in Figure 5.
Figure 5. Circuit diagram for the PE data-
path shown in Figure 3.

Figure 6. Quantifying the acclerator call and
data-transfer overhead.

that stores the values of each of its inputs. We now briefly
describe the design of the data-path and the scheduler.

1) Data-Path: The data-path of the PE has to implement
the recurrence relations in Equation 1. Each step of this
recurrence has 8 multiplication operations and 4 addition
operations. Our design finds the optimal trade-off point between
latency/throughput and resource utilization on the chip to
implement this computation. We use a Xilinx intellectual
property (IP) that provides a 5-cycle latency and 1-op/cycle
throughput for the float-multiplier and a 10-cycle latency and
1-op/cycle throughput for the float-adder. Both the adders
and multipliers run at 400 MHz. Our design utilizes two
multipliers and one adder for a 32-cycle latency and 0.25-
recursion-step/cycle throughput schedule. Figure 4 demonstrates
the utilization of the two multipliers and adders in the 32-cycle
period to compute one step of the recurrence. The circuit
representation corresponding to this schedule is shown in
Figure 5. The inputs of the circuit elements, labeled A through
L are shown in both Figures 4 and 5, where the subscripts
represent the step of the recurrence currently being computed.
For example, Ai and Li−6 (in Figure 4) represents that the
ith recurrence step for A and the i− 6th recurrence step for
L is computed in the same 32-cycle window. We achieve
synchronization in this scheme by using shift registers attached
to the muxed inputs of the adder and multipliers as shown
in Figure 5. The lengths of these registers can be derived
from Figure 4. The outputs of this data-path is fed back into
the inputs of the following stages via the scratchpad buffer
(implemented as a BRAM block) shown in Figure 3.

Figure 7. Exploiting anti-diagonal wavefront pattern of Equation 1 to optimize memory
size to L − 2, where L = min(n,m)

2) Memory Scheduler: To minimize the size of the scratch-
pad buffer (in Figure3) we compute steps of the recurrence
(Equation 1) in an anti-diagonal fashion, as shown in Figure 7.
In the figure, we illustrate the antidiagonal pattern by dividing
the entire recurrence lattice into four parts as follows:

1) Completed Blocks. Blocks for which the value of the
recurrence has been computed and is no longer required.

2) Stored Blocks. Blocks for which the value of the recurrence
has been computed and these values are required in the
subsequent steps of the computation.

3) Current Block. Block whose inputs have been produced and
can start computation.

4) Remaining Blocks. Blocks whose inputs have not yet been
generated.

Here each block refers to the three tuple
(fM (i, j), fI(i, j), fD(i, j)). We observe that that limiting
the maximum size of the buffer to 2L, where L is the size
of the largest anti-diagonal, is sufficient to compute the FA
algorithm. Figure 7 demonstrates that once this buffer is
full, simply starting over at the begining only overwrites
data that is no longer required for the computation. Our
current implementation supports matrices up to L = 512.
This limit is sufficient to accommodate the largest haplotype
(500 bases) generated by GATK, as well as reads from the
popular Illumina HiSeq sequencing platforms (150–250 bases
long). The scheduler generates a pattern of read and write
addresses into the memory for the aforementioned data-path.
The scheduler deals with the upper and lower triangles in
the recurrence lattice (e.g., i + j ≤ 8 where 8 × 1/0.25 is
the latency of the pipeline), when a PE’s pipeline cannot be
kept full because of the dependencies between the inputs and
outputs of the recurrence.

C. On-Chip Bus-Scheduing and Load-Balancing

On the accelerator side, we multiplex inputs from the CPU
(1024 bit cache lines) among the array of processors by parsing
the input stream through a “Serializer” and storing the FA
executions in FIFOs to be fed to idle processors over a bus (see
Figure 3). We observed that using cache line aligned inputs
significantly reduces the complexity of parsing the input stream
on the accelerator side, though this incurs an overhead on the
CPU side. Our experimental system (described in Section V)
had 1TB of RAM attached to the CPUs and hence this is an
acceptable trade-off. This design decision can be revisited for
other machine configurations. It is to be noted that this does not
affect performance of the accelerator, merely the complexity of
the “Serializer.” We use a straightforward arbitration mechanism
for the bus described in Figure 3. In the case of ties, the bus
scheduler arbitrates inputs in a round-robin fashion. Outputs
are handled in a similar fashion.



Figure 8. Exploiting common subsequences between reads in an active region to
memoize the computation of the FA

D. Host-Accelerator Interface

Communication between the host and accelerator is imple-
mented using the CAPI interface [14] with an IBM Power8
CPU. The CAPI interface allows an accelerator (a PCIe-attached
FPGA) coherent access to the virtual address space of a
process running on the host CPU. Our accelerators pull data
directly from three circular buffers in the processor’s memory
space. These correspond to the reads, haplotypes, and quality
scores. The CPU generates new tasks (new instances of the
FA algorithm to be computed) by executing Algorithm 1 and
enqueues inputs to the accelerator into the respective circular
buffers. The accelerator and other threads on the CPU then
consume these inputs from the buffers. CAPI is beneficial in this
instance, as we can make use of the cache coherency between
the CPUs and FPGA to easily implement mutual exclusion.

IV. ALGORITHMIC OPTIMIZATIONS

In building the accelerator as described in Section III,
we noticed that batch size (number of tasks streamed to the
accelerator at a time) has a particularly dominant effect in the
performance. Figure 6 illustrates this loss in performance as
a function of batch size. We attribute this behavior to the
software overheads (e.g., system calls, IRQ handlers) that
initiate the accelerator. Our observations can be explained by
the fact that simply batching tasks amortizes this cost over
several individual accelerator invocations. To further improve
1) batching efficiency (latency amortization), 2) host-accelerator
data transfer bottlenecks (PCIe limitations), and 3) reuse of
precomputed results (across multiple tasks), we have developed
two algorithmic methods for pruning inputs and memoizing
outputs of the FA algorithm when it is used in conjunction with
the HaplotypeCaller. It is to be noted that both the optimizations
reduce the throughput of the FPGA accelerator, but improve end-
to-end performance by reducing the number of computations
that have to be performed.

A. Common Prefixes in Reads

We observe that when Algorithm 1 is invoked on active
regions of high-coverage, high-quality datasets, a large number
of reads share a common prefix. This is an artifact of the
alignment process, of having similar reads start close to each
other, and of repeats in the reference genome. According to
the formulation of the FA algorithm, for the same haplotype,
reads with common prefixes produce exactly same results under
Equation 1. We exploit this observation by reusing values of
the recurrence relation for common prefixes. This is done by
constructing a compressed trie [19] of the reads in an active

Figure 9. Dependencies between cells when calculating FA on a de-Bruijn graph

region, and computing the longest common prefix (LCP) in
the trie. The accelerated FA algorithm is then computed on the
LCP and the answer is memoized. All substrings of the LCP in
the trie can then use the lattice values computed in the LCP as a
starting point for further computation. In fact, this optimization
can be reapplied once the LCP is removed from the trie. Though
straightforward, this heuristic significantly reduces the amount
of computation required in the HaplotypeCaller (by 20− 30%
for human clinical datasets). For example, consider the read
sequences AAACGCA, AAACGCC and AAACGCG; they share a
common prefix AAACGC. Figure 8 illustrates a compressed
trie consisting of these reads as well as the use of the LCP
to memoize the result of the FA algorithm. We see that the
LCP can be reused across the three reads and the computation
can be reduced to 1) FA on the LCP 2) Computing 3 rows
corresponding to A, C and G. This optimization is carried out on
the host-side (CPU side). The CPU schedules the LCP lattices
on to the FPGA accelerator, and the remaining computations
are carried out on the CPU using the SIMD (AVX or AltiVec
instructions). This optimization significantly reduces: 1) number
of invocations of the accelerator, 2) the amount of data that has
to be moved to the accelerator, and 3) the amount of redundant
computation that is performed on the accelerator.

B. FA on De Bruijn Graphs

In addition to the reads that share common prefixes, the hap-
lotypes generated by the assembly process in Algorithm 1 also
share large common subsequences. The De-Bruijn graph [16]
produced as a result of the assembly on an active region encodes
these common subsequences in a graphical format much like the
compressed trie in the previous section. Computing the FA of a
read and the De-Bruijn graph potentially allows us to reuse these
values as well as reduce the number of invocations of the FA al-
gorithm from the number of reads× the number of haplotypes
to just the number of reads (when executing independent
of the optimization in Section IV-A). The FA algorithm has
to be modified to allow computing similarity between a De
Bruijn graph and a read. Given that the graph represents a
partially ordered set of strings (haplotypes), we first compute
a topological sort of the graph to convert it into a total
order. Then, we follow the same FA algorithm as described in
Equation 1, with one major difference: dependencies between
lattice elements now incorporate the De-Bruijn graph. Figure 9
gives an example of conflating graph dependencies with FA
dependencies. As the quantities being added in Equation 1
represent probabilities, and the branches on the De-Bruijn
graph represent mutually exclusive subsequences of haplotypes,



Figure 10. Resource utilzation on the FPGA as a function
of the number of PEs.
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Figure 11. Mean throuhgput of the accelerator as a function
of the number of PEs.
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Figure 12. Mean end-to-end speedup of the Haplotype-
Caller when applying the accelerator (ACC) and algorith-
mic optimizations (AO).

this transformation produces the correct answer. This is a
generalization of Lee et al.’s POA algorithm [20] to PHMM
models. The software controller is augmented with the ability
to dispatch subsequences of haplotypes to the FA accelerator,
instead of traversing the De-Bruijn graph and dispatching
entire haplotypes. The final reduction (addition), of the various
topologically sorted subsequences is computed on the CPU.
This reduction corresponds to the additional dependencies
shown in Figure 9.

V. EXPERIMENTAL RESULTS

The accelerator is implemented in mixed-language HDL. We
used IPs from Xilinx to implement the single-precision floating
point adder and multipler and BRAM blocks. We implemented
the accelerator on an IBM Power8 S824L system with an
Alpha-Data ADM-PCIE-7V3 board (that uses a Xilinx Virtex 7
XC7VX690T FPGA). All the IO interfaces were clocked at 250
MHz, and the PEs were clocked at 400MHz. All measurements
(baseline CPU as well as FPGA based) were done on this
system. Our input data-set for this section was derived from
sample G15512.HCCI954.1 (same as used in [10], [13]) and
the hg38 reference human genome. We verified the correctness
of our FPGA implementation by comparing it to the CPU-
only version of the GATK HaplotypeCaller (v3.6 - Provides
SIMD optimized and multi-threaded implementations of the
algorithm). We use the C++ implementation of the FA on the
Power8 CPU as a baseline [21]. This has been optimized using
AltiVec SIMD instructions and multi-threading. Section VI
describes a comparison of this implementation to one [6] that
uses AVX256 SIMD for x86 processors.

A. Resource Utilization

We observed near-linear scaling of the utilization of on-
chip resources for the accelerator with the number of PEs (see
Figure 10). Even though the figure shows a high utilization of
logic slices on the FPGA, the actual numbers of LUTs and FFs
are much lower. For example, in the 32 PE case, even though
we used 60.47% of the slices, we used only 46.85% of LUTs
and 26.64% of FFs on the FPGA. Figure 13 and Table II report
the power consumption of the accelerator. These reports were
generated by the Vivado Design Suite.

B. Performance of the Accelerator

Compared with a C++ implementation optimized by IBM
for their 8-core Power8 architecture, the proposed accelerator

Table II. COMPARING THE POWER AND PERFORMANCE OF THE PROPOSED

DESIGN TO THAT OF A POWER8 CPU

Throughput (MCUP/s) Power (W)
Static Dynamic Total

Power8 Core 100.8 – – –
Power8 Chip 806.6 – – 190

Single PE on FPGA 296.1 0.5 4.686 8.437
44 PEs on FPGA 11983.6 2.448 13.485 19.139

Clock
31%

Signals
31%

Logic
10%

BRAM
13%
DSP
8%

MMCM
4%

PCIe
4%

Figure 13. Power consumption of the accelerator as the number of PEs is increased.

increases aggregate throughput by 14.85× (i.e., 11983.6/806.6)
in terms of throughput. We quantify throughput using the
popular MCUP/s measure. A MCUP or mega cell update
represents the computation of 106 steps of the recursion
in Equation 1 (traditionally each recursion step is called
a cell). Further, adding the algorithmic optimizations from
Section IV we observe a 41.59× (i.e., 14.85×2.8) improvement
in performance. Table II demonstrates that the proposed
accelerator significantly outperforms the Power8 CPU in terms
of power and performance. A single PE outperforms a Power8
core and a 44-PE accelerator outperforms an 8-core Power8
processor by 147.49× (i.e., 11983.6/806.6 × 190/19.139) in terms
of performance per unit energy (i.e., MCUP/Joule). Figure 11
describes the performance scaling of the accelerator with the
number of PEs. At 44-PEs we observe some non-linearities (the
difference between ideal and measured performance) because
of insufficient off-chip bandwidth and limitations with the
round-robin bus scheduling strategy in Section III-C.

C. Integration into GATK

Use of the proposed accelerator and algorithmic opti-
mizations inside the GATK HaplotypeCaller demonstrated a



Figure 14. Simulated throughput when replacing the CAPI-
based interface with a DRAM interface.

Table III. LIST OF RELATED HIGH PERFORMANCE IMPLEMENTATIONS OF PHMM. WE USE THE BEST RESULT

PRESENTED IN THE RESPECTIVE PAPER TO COMPARE PERFORMANCE.

Paper HLS SA Platform Speedup Speedup / Power

C++ Baseline [21] – – Power8 CPU 1× 1×
[6], [7] – – Intel Xeon CPU 0.91× 1.33×

[8] � � Convey HC2 NAa NAa

[9] � � Stratix V D8 NAa NAa

[10] � � Power8 & Xilinx KU060 2.35× 33.24×
[11] �/�b � Arria 10 6.32× 60.04× (TDP = 20W )
[12] – – Power8 & NVIDIA K40 15.51× 12.80× (TDP = 235W )

[13] � � Power8 & Xilinx XC7VX 6.27× 79.74×
This Paper � � Power8 & Xilinx XC7VX 14.85× 147.49×

aInsufficient data in cited paper to make comparison.
bPaper presents both HLS and HDL. We use best performance HDL implementation for comparison.

maximum acceleration of 3.287× in runtime when using 44 PEs
(see Figure 12). The algorithmic optimizations presented in
Section IV account for approximately 2.8× reduction in runtime
of the FA algorithm. Figure 12 shows this improvement as
it applies to end-to-end GATK application. It is to be noted
that the optimizations from Section IV are input-dependent and
can produce varying results for other datasets. Furthermore,
Figure 12 demonstrates the diminishing returns from adding
more processors in GATK because of Amdahl’s law (3.44×
asymptotic limit from Table I). After using the accelerator and
optimizations presented in this paper, the Align function in
Algorithm 1 dominated the runtime.

D. High-Bandwidth Memory Interfaces

With the industry trend of increasing the FPGA area in
each successive generation, the number of PEs that fit into
an FPGA will also grow. However, simple scaling of the
number of processors leads to sub-linear performance scaling,
as performance is limited by off-chip bandwidth for the FPGA
through the PCIe/CAPI interconnect. To test the scalability
of our accelerator, we replaced the CAPI interface with that
of a simulated memory controller through the trace-driven
simulation framework called Ramulator [22]. We observe that
changing effective bandwidth can lead to significant non-
linearities in scaling behavior (see Figure 14). For example,
using HBM (which is already commercially available on
flagship Xilinx Ultrascale+ FPGAs) leads to near-linear scaling
of performance up to 256 PEs, after which non-linear scaling
is observed. This performance scaling, though significant in
terms of the FA algorithm, has almost no impact in the
GATK HaplotypeCaller because of the diminished returns from
Amdahl’s law (as seen in Figure 12).

VI. RELATED WORK

In this section, we briefly describe related work (see
Table III) that has accelerated the FA algorithm on a variety
of processors (e.g., CPU, GPU, and FPGA devices). The
accelerators in Table III are generally based on SA architectures,
which suffer from the shortcoming of inefficient use of hardware
resources for handling varied input sizes of real sequence data.
Figure 1 is a graphical representation of Table III. Some of the
related work does not clearly mention throughput and power
measurements. In all such cases the Intel AVX implementation
of the FA algorithm [6], [7] is used to normalize performance
stated in the respective papers to that of our baseline. In the

situation that power measurements are not provided in cited
papers, we assume publicly stated TDP for the device used in
the implementation. Our results demonstrate that the design
proposed in this paper outperforms all the previous designs in
terms of both the PHMM micro-benchmark, and transitively
to the GATK HaplotypeCaller on representative datasets. It is
to be noted that our performance results in Table III do not
contain the algorithmic optimizations (from Section IV) that
further improves performance by 2.8× (i.e., we compare only
the design of the accelerator). The GPU implementation in
[12] demonstrates marginally higher absolute performance (i.e.,
1.04× = 15.51/14.85), but our design represents a significant
improvement (i.e., 11.5× = 147.49/12.80) in performance-per-
energy consumed terms. Furthermore, the K40 GPU has
x16 PCIe connections compared to our x8, and on-board
GDDR5 memory, use of which will also benefit our design
(see Figure 14).

Similarity to Smith-Waterman and other Levenshtein dis-
tance (LD) algorithms. The PHMM computation is an general-
ization of edit-distance formulation proposed by Levenshtein
in [23] to probabilistic gap penalties [1]. Several LD variants
have been accelerated in ASICs and FPGAs (e.g., [24]–[26]).
However the key point of difference between the LD and
the PHMM computations is in the use of floating point math
which produces a significantly more complicated data-path.
Furthermore, LD computations have been shown to be memory-
bound for large lattices, whereas PHMM computations are
significantly more compute intensive [19].

VII. CONCLUSION

This paper presented an approach to accelerating the
computation of the FA algorithm in hardware. Our key insight
of using input data characteristics to inform on architectural
design patterns allows us to outperform traditional architectures
in terms of both energy per operation and runtime performance.
The use of this accelerator in genomic data analysis represents
a significant acceleration in terms of time spent in computation.
The proliferation of sequencing platforms and the resulting
explosion in genomic data [27] will make this accelerator even
more important in the future. Though most of the techniques
presented in this paper are applicable only to the FA algorithm
and transitively only in bioinformatics applications, the general
design philosophy of using input data characteristics, in addition
to the algorithmic definition, for design specialization of
accelerators can be broadly applied across a large number
of domains.
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