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Introduction

The use of *omics data is transforming the healthcare and life-
sciences domains to become more precise, personalized and data-
driven. The key challenge in realizing the potential is to effec-
tively merge several different modalities of data (e.g., genomic,
metabolomic, epigenetic, medical sensor and patient record data)
to produce actionable intelligence that can be used in clinical ther-
apeutic contexts. Further this data fusion and subsequent ana-
lytics must be done in a time- and cost-effective manner. This
presents interesting analytics, algorithmic and computer-systems
challenges dealing with computation and data storage. In this pa-
per, we present an outline of the CompGen machine at the UIUC,
which was built in collaboration with the Mayo Clinic and sup-
port from IBM. It addresses several problems at the intersection
of healthcare data, novel analytical tools and methods, and novel
computer system architecture and design.

At it’s core, the CompGen machine uses probablistic graphical
models called factor graphs, along with supervised, unsupervised
learning methods, as well as sequence data processing algorithms
to fuse information from several sources to perform inference and
prediction. The system uses a hardware-software co-design ap-
proach to significantly improve computational performance and
energy consumption. Further, using factor graphs to model the
performance of various components of the system, we are able to
distribute computations effectively between our custom designed
accelerators as well as, popularly available accelerators like GPUs
and MICs. We demonstrate the efficacy of the approach in solving
several important biological and medical problems: 1) Incidence
of Diabetes in Populations, 2) Psychiatric Drug Response, and 3)
Seizure Prediction and Localization. Figure 1 demonstrates the
overarching design of the proposed proposed framework.

Bringing Innovations in Analytics to the Bedside

Mathematical formulations that combine multi-modal data in the
form of multi-omic science with longitudinal clinical measures from
electronic health records to generate actionable intelligence contin-
ues to be an unsolved problem. Actionable intelligence is knowl-
edge inferred from the data that aids in personalizing therapeutics
or identifying novel biomarkers as candidates for laboratory exper-
iments. Addressing the limitation of combining multi-modal data
is the Analytics and Learning Framework for Omics and Clinical
Data (ALMOND). ALMOND currently supports analyses on the
following disease and data types:
1. Mixture model-based identification of novel biomarkers for drug

mechanisms in triple-negative breast cancer [1].
2. The combination of probabilistic graphs, unsupervised and su-

pervised learning for modelling and predicting drug outcomes
in major depressive disorder.

3. Factor graphs based inference to predict surgical re-admissions
in diabetic populations using electronic health records.

4. Approximate inference on factor graphs that model EEG data
to predict epileptic seizures and localize seizure affected por-
tions of the brain for excision.

Computer Systems for Healthcare Data Analysis

IGen [2]: At the application level, we have analyzed several com-
putational genomics workloads like those for genome assembly,
gene prediction, functional similarity analysis between protein se-
quences, multiple sequence alignment, phylogeny, and germline-
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Figure 1: Integrative analysis of multi-modal healthcare data on
the CompGen System.

and somatic-variant calling to find a small set of computationally
intensive “kernels” that are often reused across analyses. These
kernels have been performance tuned to modern to CPU, GPU
and MIC architectures.

TCGA [3, 4]: At the hardware level, we have designed, archi-
tected, prototyped and evaluated the performance of a computa-
tional genomics co-processor called TCGA (The Computational
Genomics Accelerator) that targets the execution of these kernels.
TCGA represents the architecture and programming model of a
co-processor that targets the acceleration of computationally in-
tensive kernels in NGS data-analytics applications. TCGA is pro-
totyped on a Xilinx FPGA platform. TCGA uses domain-specific
knowledge about the algorithms (kernels) and their input data
characteristics to develop various techniques to overcome compu-
tational issues in traditional processors.

Symphony : The use of custom co-processors like TCGA, GPUs,
and MICs, points to a future where biologists (non-expert users)
have to program their workloads to a system of heterogeneous pro-
cessors. Symphony automates this process by 1) choosing kernel
implementations across all accelerators, 2) the placement of ker-
nels in disaggregated clusters of such processors, and 3) movement
of data between memories and processors. Symphony builds a
cost-performance trade-off model for data-locality, processor affin-
ity, and shared-resource contention between co-located tasks by
representing information about system resources in the form a
probabilistic graphical model. Using minimal training on repre-
sentative workloads, Symphony integrates prior knowledge about
workloads, performance counter measurements, processor archi-
tecture descriptions and interconnect topology to efficiently search
the trade-off space to make scheduling decisions.

Using the human variant detection and genotyping workload as
a driving example, we will demonstrate a 85× improvement in run-
time performance (from 59 hours running on the Blue-Waters su-
percomputer to 40 minutes, for a human genome at 60× coverage)
and a 300× improvement in terms performance-per-unit-energy
consumed for the CompGen system.
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