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ABSTRACT
Recent growth in the volume of DNA sequence data and
the associated computational costs of extracting meaning-
ful information warrant the need for e�cient computational
systems at scale. In this work, we propose the Illinois Ge-
nomics Execution Environment (IGen), a framework for ef-
ficient and scalable genome analyses. The design philosophy
of IGen is based on algorithmic analysis and extensive mea-
surements on compute- and data-intensive genomic analyses
workflows (such as variant discovery and genotyping analy-
sis) executed on high-performance and cloud computing in-
frastructures. IGen leverages the advantages of existing de-
signs and proposes new software improvements to overcome
the ine�ciencies we observe in our measurements. Based on
these composite improvements, we demonstrate that IGen
is able to accelerate the alignment from 13.1 hours to 10.8
hours (1.2⇥) and the variant from 10.1 hours to 1.25 hours
(8⇥) calling on a single node, and its modular design scales
e�ciently in a parallel computing environment.
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1. INTRODUCTION
The recent drop in genome sequencing costs [1] and the

consequent proliferation of DNA sequencing technology have
enabled large sequencing projects that are having a signifi-
cant impact on several fields, from plant and animal biology
to clinical therapeutics. Projects like the 1000 Genomes
Project [2] and the Cancer Genome Atlas [3] have produced
petabytes of genomic sequence data. Further, large-scale
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sequencing projects [4] underway today are expected to pro-
duce two orders of magnitude more raw sequencing data
than what is available today. This unprecedented growth of
genomics data and high computational costs for subsequent
analytics makes a compelling need for e�cient and scalable
computing systems.

In this work, we propose IGen (the Illinois Genomics Ex-
ecution Environment), an e�cient and scalable computa-
tional framework for genomic analysis. In particular, we fo-
cus on variant calling and genotyping analysis, an approach
that identifies mutations in a sample genome with respect to
a population baseline genome. We chose this analysis keep-
ing in mind its significance in clinical settings for disease di-
agnostics of potentially several hundred patients a day. Like
many other genomic analyses, variant calling is a workflow
comprising a chain of several analysis tools. For example,
the Broad Institute Best Practice Guidelines workflow [5,6]
comprises alignment (e.g., [7–10]), SNP (single nucleotide
polymorphism) detection (e.g., [5,11]), and SNP genotyping
(e.g., [5, 12]).

Using a systems approach, our key contributions include:
1. Identifying the presence of only a few mathematical ker-

nels (algorithmic patterns) with common algorithmic struc-
tures, across several popular bioinformatics tools.

2. A profiling based study of performance bottlenecks of
popular tools used in variant calling workflows on high
memory workstations, HPC and cloud infrastructures.

3. The design of IGen, a genomic data analytics framework
which builds on contributions 1 & 2 above. IGen over-
comes our observed ine�ciencies (e.g., low CPU and disk-
bandwidth utilization and the inability to scale to large
number of processors) while still preserving the advan-
tages of existing designs.
IGen’s design can significantly improve the handling of in-

put data from disk to memory and memory to CPU, stream-
lining and enhancing computation. The highlight of IGen’s
performance is as follows: it can accelerate alignment by
1.2⇥ (from 13.1 hours to 10.8 hours) and variant calling
by 8⇥ (10.1 hours to 1.25 hours). It can also horizontally
scale out on representative HPC systems (such as Blue Wa-
ters [13]) and cloud infrastructures with almost linear per-
formance scaling.

2. THE VARIANT-CALLING WORKFLOW
In this section, we briefly describe the structure of a variant-

calling workflow. Variant calling statistically infers di↵er-
ences between a sampled genome and a reference genome
that represents the “baseline” genome for a population of
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the candidate species. This workflow takes as input high-
throughput sequencing (HTS) data [14] of a sample and a
reference genome and produces as output a list of mutations
(single nucleotide polymorphisms (SNPs), small insertions
and deletions (indels)), loci (the positions on the reference
genome at which they occur), and the confidence the algo-
rithm has in the correctness of the answer. The variant-
calling workflow is the preliminary step of a large number of
biological and medical analyses that look to establish rela-
tionships between genotypic and phenotypic traits.

The Broad Institute Best Practices Guidelines [5,6] (BPG)
recommends the step-by-step process for performing variant-
discovery analysis in HTS datasets. This process has be-
come the de facto standard amongst biologists and bioinfor-
maticians for computing variants. The best practices guide-
lines divides the entire variant-calling process into three con-
stituent phases:
1. Preprocessing : Deals with correctly mapping reads into

their most likely point of origin in the genome and elim-
inating systemic errors in the HTS data. This phase is
divided into the following steps:
(a) Alignment [7,10,15,16]: Maps each short-read in the

input to a position in the reference genome that the
read most likely came from.

(b) Marking Duplicates [17–19]: Mitigates biases intro-
duced by duplicate reads due to polymerase chain
reaction (PCR) amplification or to optical duplica-
tion in the sequencing machine.

(c) Local Realignment [18,19]: Corrects alignment posi-
tions at the site of known mutation in a population.
These errors occur becaused the error models used
by aligners penalize local alignments containing in-
dels more than mismatches.

(d) Base Quality Score Recalibration (BQSR) [20]: Iden-
tifies and corrects systemic errors (inherent to the
sequencing machines) in the measurement of base
quality scores.

2. Variant Calling [21–26]: Identifying mutations in an align-
ment in comparison with a reference genome.

3. Filtration and Refinement [27]: Filters false positives from
the set of called variants.
While our measurements address the entire BPG pipeline,

our design of IGen addresses the alignment (the most time-
consuming) and variant-calling (the most algorithmically
complex) aspects of the BPG pipeline.

3. PERFORMANCE PATHOLOGIES IN THE
VARIANT-CALLING WORKFLOW

To design an e�cient and scalable computational frame-
work, we first wanted to learn where the existing computa-
tional infrastructures perform well and where they lack in
performance. Further, we wanted to know the factors limit-
ing performance so that such limitations could be addressed
in our framework’s design. In this section, we describe our
comprehensive profiling study of the performance bottle-
necks and limitations of the tools used in a variant-calling
workflow. The experiments are performed on three popular
BPG workflow configurations (Table 1) running on machines
(Table 2) representative of an HPC supercomputer (Blue-
Waters at NCSA, Illinois), a bare-metal node on a cloud
infrastructure, and a high-memory workstation. Our input
dataset for all test cases is a 60⇥ coverage simulated [28]

whole human genome with error models and read length
distributions taken from an Illumina HiSeq 2500 sequencing
machine. Based on our measurements (summarized in 3),
we answer the following questions:
Question 1. What is the most e�cient deployment strat-

egy for the variant-calling workflow?
Question 2. What are the limiting factors in the perfor-

mance of the tools used in the variant-calling workflow
on today’s premier computational platforms?

Question 3. How well does the variant-calling workflow
lend itself to a “scale-out” execution model, such as
cloud computing?

Configurations of tools

Workflow Stage T1 [5,6] T2 [29] T3 [19,26]

Alignment BWA -

Mark Duplicates Picard ADAM

Realignment GATK IndelRealigner ADAM

BQSR GATK BaseRecalibrator ADAM

Variant Calling GATK HaplotypeCaller Avocado

Table 1: Configurations of di↵erent variant-calling
workflows for our measurement study. Configura-
tions T1 and T2 correspond to single-node and dis-
tributed executions of the same tools, respectively.

System

CPU RAM Storage

Blue Waters
(XE-6)

2⇥AMD
Opteron 6300

64 GB Lustre

Configuration
1 (C1)

2⇥Intel Xeon
E5-2695v2 @
2.40GHz

192 GB Gluster over
100GbE;
800GB HDD

Configuration
2 (C2)

4⇥Intel Xeon
E7-4860v2 @
2.60GHz

3 TB 6⇥1 TB HDDs
(software
RAID 0),
4⇥8 TB SSDs
(hardware
RAID 0),
RAMFS

Table 2: Configurations of test machines for mea-
surement study

Question 1: Most efficient deployment strategy.
Table 3 shows the advantage of using the cloud-based

ADAM and Avocado workflow in terms of overall perfor-
mance (even though it does not perform alignment1 align-
ment tool from the same authors would ensure faster pro-
cessing than T2 or T3.). We see that tool-set T1 has the
advantage of being deployable in a wide range of infrastruc-
tures. We also see that exploiting data-parallelism at the
level of individual reads in the input dataset (as done in
toolset T3) has a significant e↵ect on performance as com-
pared to coarse-grained data-parallelism (at the level of in-
dividual chromosomes) exploited in T2. Another factor to
note is the of accuracy of the output. T1 (along with its
distributed execution, T2) is the most widely accepted com-
bination of tools whose answers are trusted by biologists and
bioinformaticians.
1Using the SNAP [16]
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Tool Platform Machine Walltime

(hr)

Issues

T1

Workstation (HDD) C2 59.1 (1) Unnecessary and ine�cient disk IO. (2) CPU
bound by memory bandwidth. (3) Tools require
linearly sorted data, which takes time to compute
and hampers parallel processing. (4) GATK
framework interface is insu�cient to express any
complex reduction tasks

Workstation
(RAMDISK)

C2 41.2

Cloud C1 78.1

HPC XE-6 59.3

T2 HPC XE-6D 29.3 (1) Cannot exploit fine-grained data-parallelism even
though available in the problem (2) POSIX-based tools
cannot fully utilize these systems

T3 Cloud C1D 11.4 (1) Serialization and network transfer bottleneck (2)
CPU bound by memory bandwidth (3) Analysis dataset
size bound by available memory

Dragen copro-
cessor

Hardware Accelerated 0.31* (1) Some model parameters are compiled into hardware
and cannot be changed (2) Significantly longer develop-
ment cycles (3) Rigorous validation of output pending

Table 3: Summary of profiling results (analyzing a human genome at 60⇥ coverage) in this work. Results
marked with * are publicly reported performance numbers by the tools’ authors. System configurations
marked with ⇤D refer to distributed executions across multiple nodes.
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(c) GATK HaplotypeCaller

Figure 1: Normalized cross-correlation between IO and CPU utilization across the runtime of T1. The
dark lines represent the median cross-correlation across 100 runs. The lighter lines represent the correlation
coe�cient for a single run. Red lines indicate a significance threshold.

There are recent advances in fully customized hardware
for variant-calling workflows. Fully customized hardware
solutions, such as Dragen, claim a runtime of the variant
calling for the whole human genome of 0.31 hours (18 min-
utes), as shown in Table 3, while still closely following Broad
Institute’s best practices for variant calling. We clarify that
comparing the runtime performance of custom hardware so-
lutions with software solutions is not a fair one, and hence
we will only compare our proposed framework’s improve-
ments with that of the existing software solutions. Further,
the analytics algorithms of custom hardware solutions are
not open-sourced, hence we do not speculate on their per-
formance in comparable software implementations.

Question 2: Performance Limitations.
We observe that the primary performance bottleneck of

the workflow is unnecessary and ine�cient disk IO. The
pathologies are as follows:

1. Large inputs (⇠ 100 GBs) are repeatedly read and writ-
ten to disk between di↵erent stages of the workflow. Ta-
ble 3 shows a ⇠ 20% di↵erence in performance between
HDD and RAMDISK usage for T1 running on C2. T3 is
able to avoid this issue by using in-memory computation.

2. Legacy data formats do not allow e�cient random access.

For example, a BAM file for storing alignments uses an
R-Tree-based index to identify the mapping of reads to
genome regions. However, a nontrivial amount of com-
pute and data traversal has to be done to find all the
nucleotides (from an alignment) at a particular locus in
the reference.

3. Most steps of the workflow in T1 and T2 work by reading
in a small amount of data from disk, computing on it, and
then writing it back out. This means that individual read
and write IOPs issued by the application are too small to
utilize the entire disk bandwidth.

4. All IO operations are serialized (no asynchronous IO).
Figure 1 shows the cross-correlation between IO and CPU
utilization in some of the tools used in the workflow. By
observing the peaks in IO and compute utilization, we
see that the peaks are highly correlated and happen one
after the other.

5. Inability to utilize a large parallel file system (common
to HPC clusters). For example, configuration XE-6 uses
a CRAY Sonexion Lustre file system. We observe (in
Figure 2) that only a fraction of total bandwidth (theo-
retical peak 10 GB/s) is utilized. This can be attributed
to: a) individual read and write IOPs being too small to
use the entire bandwidth; and b) highly parallel file IO
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disk for writes

Figure 2: Performance of the BPW Pipeline on the Blue-Waters supercomputer. Median resource utilization
across CPU, memory, disk-read, and disk-write bandwidth is very low (approximately 10%).

(like that provided by MPI-IO) cannot be used under the
POSIX interface for reads and writes.

Tool Walltime

(in hours)
Bytes Read

and Writ-

ten

Instructions

Executed

BWA-MEM 13.10 9.53E11 1.38E15

Picard
MarkDupli-
cates

7.211 9.81E11 4.84E14

Samtools SAM
to BAM

8.11 8.39E11 7.61E14

GATK BaseRe-
calibrator

17.185 2.73E10 2.51E15

GATK Realign-
erTargetCreator

0.197 1.21E7 1.4E13

GATK IndelRe-
aligner

6.499 3.51E10 2.48E14

GATK Haplo-
typeCaller

10.126 3.3E10 1.33E15

Table 4: Compute and disk IO in the primary steps
of the BPW on C1 for a human genome @50⇥ cov-
erage (Note: OS bu↵er caches were cleared between
executions of two tools.)

Table 4 shows the relation between runtime disk IO per-
formed and computation performed at di↵erent stages of
the workflow. It is apparent that almost all stages of the
workflow are characterized by large volumes of data read
and written. Some stages, like the GATK BaseRecalibra-
tor, GATK IdelRealigner, and GATK HaplotypeCaller, are
much more compute-intensive. In particular, we note:
1. The GATK framework provides an interface to traverse

regions in an aligned genome through iterators called
walkers (a sorted iterator over a specified region). This
is a variant of the map-reduce paradigm but su↵ers be-
cause the API is insu�cient to express many complex
reduction tasks (e.g., random traversal of a region of the
genome). As a result, all the tools based on GATK are
constrained to traverse linearly sorted data. This hinders
development of algorithms and tools that can e�ciently
make use of parallel computers.

2. While the GATK framework uses map-reduce as a pro-
gramming abstraction, it does not use Map-Reduce as an
execution strategy. This hinders it from using distributed

execution runtimes like Hadoop [30] and Spark [31] to
scale to large clusters.

3. Another significant source of ine�ciency in the variant-
calling pipeline is due to memory access patterns, par-
ticularly memory bandwidth constraints. For example,
in the GATK tools used in the pipeline, we observe that
⇠ 60% of the instructions executed are memory reads and
writes. Of the remaining 40% instructions, stalls in the
processor back end occur most commonly due to memory
bandwidth limitations. Detailed results from our profil-
ing experiments can be found in our technical report [32].

4. Poor design of reused data structures. For example, con-
sider the following code snippet 2 in the HaplotypeCaller
tool.

protected Map<GATKSAMRecord, Map<Allele,

Double>> likelihoodReadMap = new

LinkedHashMap<>();

,!

,!

Access to the likelihoodReadMap variable will incur sev-
eral cache misses, and there is no way to predict any
regular access pattens to this data structure. This prob-
lem (along with other, similar problems) has been noted
by the developers [33] of GATK, but projects looking to
fix these problems seemed to have stalled.

Question 3: Distributed Execution.
To address the throughput challenges of single-node ex-

ecution of genomics pipelines, scientists apply techniques
such as map-reduce [18,26,29,30,34,35] and columnar stor-
age [19, 36, 37]. This is reflected in the significant perfor-
mance improvement in terms of distributing computation
across multiple compute nodes (Toolsets T2 and T3 com-
pared to T1 in Table 3).

Puckelwartz et al. [29] demonstrate that coarse-grained
data parallelism (at the level of chromosomes) can utilize
the advantages of a map-reduce style execution model for the
workflow. We use a similar approach to distributing work
across nodes on the Blue Waters supercomputer in T2. Fig-
ure 3 shows the distribution runtime of various tools in the
BPG workflow executed on a single node (serial) and data-
parallel version described above. We observe that the Re-
alignment & Recalibration phase gains most from the data
parallel execution and the alignment gains the least. This
is because the data-parallel alignment phase has to merge
2https://github.com/broadgsa/gatk/blob/
00fbcb36b2b2eba8a5c4ab32d26fa89c9637b04a/public/gatk-
utils/src/main/java/org/broadinstitute/gatk/utils/genotyper/
PerReadAlleleLikelihoodMap.java#L54
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Chromosome Realignment &

Recalibration
Variant
Calling

Figure 3: Comparing runtime of the BPG workflow
for single node execution and data-parallel execution
per chromosome

(reduce) the results of several parallel short-read aligner ex-
ecutions, results in an expensive on-disk sort of a couple of
hundred GB of aligned short-reads. The exact runtime of
the workflow can be computed by using the measurements
in Figure 3 along with those for Configuration XE-6D in Ta-
ble 3. Overall, we observe that system resource utilization
across the cluster (in Figure 2) for di↵erent phases of the
workflow is comparable to the single-node execution and is
quite poor. We believe this happens because: a) The appli-
cation uses the file system as a distributed shared mem-
ory to cache data between executions. b) It is not able
to take advantage of network based sorting techniques (like
the map-reduce [30] shu✏e). c) Underlying assumption of
POSIX semantics for file systems means that these applica-
tions do not scale well. d) Coarse-grained data parallelism
implies that the application can only scale to the number of
chromosomes available in the input dataset, even though the
problem a↵ords a higher level of data parallelism. e) Load
imbalance issues are caused by the distribution of sizes of
chromosomes.

Similar approaches have been suggested [34,35] for the use
of the Hadoop execution environment to parallelize the ex-
ecution of tools in cloud environments by exploiting coarse-
grained data parallelism. These approaches do achieve bet-
ter performance (like Puckelwartz et al.), but they do not
tackle the underlying performance pathologies associated
with these bioinformatics tools. In general, they incur high
overhead due to duplicate loading of indices and poor broad-
casting of shared data.

Nothaft et al. [19,26] identify some of these problems with
the BPG workflow for variant discovery. They demonstrate
significant improvement in performance by using a colum-
nar genomic data format ADAM and variant-caller Avo-
cado running on top of Apache Spark. Our experiments
with these tools (T3) on machine configuration C1 show
that they perform significantly better (28 hours on 22 nodes
vs. 11 hours on 4 nodes) than the T1 and T2 (see Ta-
ble 3). This can be attributed to three major innovations in
the ADAM-Avocado workflow: a) algorithmic changes that
remove the requirement of sorted order of sequence data;
b) use of columnar storage that provides a denser storage
layout, thereby improving on-disk data layouts and e�cient
random access; and c) the ability to use hash-based parti-
tioning and sorting using the network as provided by the
underlying Spark data-shu✏ing engine. However, we still
observe that IO is the biggest bottleneck in the system. In
keeping with the use of an in-memory processing frame-
work like Apache Spark, we see a significant decrease in
disk IO use, however network IO between nodes increases
significantly owing to the shu✏ing of data between nodes.

We observe that the primary bottleneck in this process is
the serialization/network-transfer/deserialization chain that
must execute for all data shu✏es. In Figure 4, we see that,
99% of the time, up to 14000 seconds (3.8 hours) was spent
in serialization-deserialization, compression, and data trans-
fer out of the 11.4 hour runtime observed in Table 3.

Figure 4: CDF showing the overall time spent in
serializing, transmitting, and deserializing data in an
execution of a whole human genome in the ADAM-
Avocado framework

Algorithm 1 Basic algorithmic structure of a reassembly
based variant caller
1: alignment Aligned set of reads
2: reference Reference genome for organism
3: n Ploidy of the organism
4: variants ;
5: regions Find_Candidate_Regions(alignment, reference)
6: for region 2 regions do

7: reads Reads_In_Region(region, alignment)
8: assembly  Generate_Assembly(reads)
9: haplotypes Enumerate_Paths(assembly)

10: realignment ;
11: for h 2 haplotypes do

12: for r 2 reads do

13: realignment[h] realignment[h][ Realign(h, r)
14: end for

15: end for

16: for r 2 reads do

17: h Best haplotype for r in realigment

18: Remove r from realignment[h0] where h

0 6= h

19: end for

20: for h 2 haplotypes do

21: for locus 2 h do

22: variant  variant [ Geno-

type(Bases_At_Locus(locus, realignment[h]))
23: end for

24: end for

25: end for

26: return variants

4. ALGORITHMIC PATTERNS
In this section, we present a study of a selection of algo-

rithms used in a large number of genomic analyses (including
variant calling, metagenomics, and phylogeny). Our study
demonstrates:

1. The existence of common algorithmic kernels between
di↵erent steps of the pipeline. The algorithmic ker-
nels are a set of mathematical operations (e,g., Hid-
den Markov Models, computing edit distances) that
are part of the larger set of computations in a tool.
Several tools were manually inspected using their al-
gorithm design and the code itself.
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Analysis Sub-Computation Kernel Functions Tools

Variant Calling

Alignment Index computation, Needleman-Wunsch SNAP, BWA, Bowtie

Indel Realignment Assembly, Edit-distance, Needleman-Wunsch GATK IndelRealigner, ADAM

BQSR Yates Correction GATK BaseRecalibrator, ADAM

Variant Calling Entropy, Convolution, Assembly, Edit-
distance, Pair-HMM, Bayesian inference

GATK HaplotypeCaller, Avocado,
Platypus

Metagenomics

Assembly De-Bruijn Graph Construction GeneStitch, MetaVelvet, Meta-IDBA,
IDBA-UD

Gene Calling Inference on HMM Genemark.hmm

Species Diversity Graph-Traversal, Inference on HMM MEGAN, CARMA, Phymm

Phylogeny
Distance Method Arithmetician, Minimization of L2-norm PHYLIP, MEGA, TNT, ClustalW,

PAUP, T-Rex, DARWIN

Probabilistic Method Inference on HMM Clustal-Omega, HMMER, PFAM,
UPP, TIPP, SEPP

Table 5: Summary of algorithmic kernels used across a variety of tools in variant calling, metagenomics, and
phylogeny

2. Di↵erent bioinformatics tools that perform the same
computation have very similar algorithmic structures
and di↵er primarily in a few kernels.

This study encompasses a partial but significant number of
tools used for a wide range of computational genomics anal-
yses.

The existence of these patterns can be attributed to the
mathematical models underlying the computation. For ex-
ample, if two tools study similar biological phenomena, the
underlying operations (computations) performed on the re-
spective mathematical models are also similar. This observa-
tion gives us a natural partitioning of the larger algorithms
into smaller tasks, as well as identifying dependencies be-
tween tasks. These can be described as data and control flow
graphs (CDFG). For example, Figure 5(a) demonstrates one
such graph for the GATK HaplotypeCaller. This allows us
to reason about:

1. Available parallelism in the problem.
2. System level optimizations for a large number of bioin-

formatics tools:

(a) algorithmic kernels can be individually accelerated
in hardware;

(b) accelerating reused kernels can target multiple tools
at the same time; and

(c) runtime systems can be used to manage kernel exe-
cutions and data movement across a large distributed
system.

3. CDFGs can be easily and e�ciently composed to form a
workflow.

Table 5 summarizes this analysis of the algorithms used
in variant calling, metagenomics, and phylogeny. A detailed
analysis of the tools is included in our technical report [32,
38]. The generic algorithmic structure for reassembly-based
variant calling and genotyping algorithms like GATK Haplo-
typeCaller [5,18], Platypus [24] and Avocado [25] is shown in
Algorithm 1. Each of these tools defines a set of kernel func-

tions to replace the generic ones found in the psuedocode of
Algorithm 1. For example, Table 6 demonstrates the math-
ematical formulations of these functions for the GATK Hap-
lotypeCaller tool.

Kernel Function Mathematical Formulation

Find_Candidate _Re-

gions

(1) Entropy calculation for each locus
in the alignment; (2) Gaussian low-
pass filtering of calculated entropy; (3)
Thresholding activity profile to find
candidate regions

Generate_Assembly De-Bruijn Graph Assembly [39]

Realign Pair-Hidden Markov Model [40]

Genotype Statistical model defined for
mpileup [22, 27]

Table 6: Kernel functions involved in the GATK
HaplotypeCaller as shown in Algorithm 1

5. THE ILLINOIS GENOMICS EXECUTION
ENVIRONMENT (IGEN)

IGen is a framework for e�ciently describing analytics
that deal with NGS sequence data for high-performance ex-
ecution on a single machine as well as scaling out to a cluster
of nodes. It makes use of our observations from the Sec-
tions 3 and 4. IGen provides computational and IO prim-
itives that can be used together to build genome analysis
tools.

Algorithmic Patterns and Workflow Parallelization.
Based on our observation that several bioinformatics tools

can be expressed as data-flow graphs composed of a small
number of kernel functions, we designed the IGen framework
as a library of kernel functions that can be used together to
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Figure 5: The GATK HaplotypeCaller algorithm expressed as a CDFG using the IGen framework and its
deployment strategy over a cluster using the ExEn framework

Figure 6: Comparing the runtimes of traditional
tools with IGen-based tools

form meaningful bioinfomatics tools. Underlying IGen is a
runtime library called ExEn for executing data-flow graphs
and coordinating IO operations. Figure 5(b) shows the ser-
vices provided by IGen and ExEn for taking an algorithm
expressed as a CDFG of kernels and deploying it on a set
of processors in a scalable and e�cient manner. A detailed
description of the ExEn runtime environment can be found
in our technical report [32]. This approach embodies two
key improvements over previous work:
1. Optimizing performance of kernel functions. IGen builds

a list of kernels from Table 5 (currently only for the SNAP
aligner and the GATK HaplotypeCaller for variant call-
ing) that are able to make best use of modern proces-
sors through the use of SIMD and threading, by choosing
between the openly available implementations of these
functions and our own implementations.

2. Data parallelism at several levels. Our data-flow-graph-
based representation of these bioinformatics tools can
highlight the data parallelism available in the problem
area at the level of individual NGS reads. The ExEn
framework then uses this information to adaptively de-
cide the granularity of the work it dispatches to a partic-
ular processor.

Improved Data Handling.
Our profiling measurements show that a number of data

cleaning and quality control steps are IO intensive. Simply
parallelizing these steps using more nodes will not resolve the

problem that the CPUs are mostly idle due to outstanding
IO activities. IGen uses a number of techniques to e↵ectively
perform IO:

1. In-memory data layout. IGen uses a Structure of Array
(SoA) data layout to replace the widely used Array of
Structures (AoS) layout for storing NGS data in memory.
For example, a SAM file for aligned reads [21] is a col-
lection of records stored consecutively, where each record
for an aligned read contains 11 mandatory fields (e.g.,
read sequence, quality scores of its bases, the aligned po-
sition, etc.). Traditional tools have the drawback of hav-
ing to iterate over record separators to identify records
and then use a gather-scatter-based mechanism for mem-
ory access. The SoA layout allows for contiguous memory
access patterns, allowing better locality and bandwidth
utilization and reducing the need for CPU-Memory IO,
and improved SIMD e�ciency.

2. On-disk data layouts (file formats). In IGen, disk data
layouts are bit-wise identical to the in-memory layouts
described earlier. This removes the overhead of parsing
input files from disk. As a result, all in-memory data
structures that use pointers are constrained to be rela-
tive to the start of the bu↵er (dereferencing operations
include an extra addition of a base pointer). Orthogo-
nally, this gives us the ability to use asynchronous IO by
mapping a file (through the mmap system call) to memory
using the operating system. This solves the issues we ob-
serve in the ADAM file formats, where serialization and
deserialization of data takes a significant portion of the
runtime.

3. Data representation. We observe that all tools in the
BPG workflow use a redundant 8-bit representation for
nucleotides and quality scores. Instead, IGen uses a 3-
bit representation for nucleotides (i.e., A, C, G, T and N),
a 2-bit representation for CIGAR strings, and a 4-bit
representation for quality scores. We observe that this
change, coupled with the SoA data formats, provides a
significant performance improvement, as all inputs now
have a very compact and dense representation. This also
improves overall bandwidth utilization and cache per-
formance. Other work, such as CRAM [41], has per-
formed compression on columnar representation of align-
ment data to improve overall performance by limiting IO.
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In contrast, the approach used in IGen has the added
advantage of not imposing additional restrictions on the
ordering and structuring of the data.

Scalable Distributed Execution.
The ExEn runtime environment can use the one-sided

communication available in MPI to allow distributed exe-
cution across a cluster of computers. The use of one-sided
communication follows from our observations of time spent
performing the serialization and deserialization of network
data in ADAM and Avocado. One-sided communication
fits well with our data model described above and allows
us to use data transfers between nodes with almost no time
spent in serialization. In addition, ExEn and IGen utilize
network-based sorting and aggregation techniques to allow
some phases of the computation to have a linearly sorted
view of the data. This is a significant improvement in perfor-
mance (for HPC machines) over the traditional disk-based
sorting used in T1 and T2.
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Figure 7: Distribution of CPU an disk IO band-
width utilization for the alignment and variant-
calling tools implemented in IGen

5.1 Results
We implement the SNAP alignment algorithm [16] and

the GATK HaplotypeCaller algorithm in the IGen frame-
work. We use a 60⇥ coverage simulated human genome
sample (same as our previously described measurements) to
compare the performance of the original tools to those imple-
mented in IGen. We run several experiments on the Blue-
Waters XE-6 nodes (both for single node and distributed
processing experiments). Figure 6 demonstrates the im-
provement in performance of the IGen-based implementa-
tion of the alignment and variant-calling tools compared to
their original implementations. The alignment computation
is accelerated by ⇠ 1.2⇥ for a single XE-6 node (reduction
from 13.1 hours to 10.8 hours) and by ⇠ 13⇥ for a cluster
of 10 XE-6 nodes. The variant-calling computation is ac-
celerated by ⇠ 8⇥ on a single XE-6 node (reduction from
10.1 hours to 1.25 hours) and by ⇠ 70⇥ on a cluster of
10 XE-6 nodes. The alignment computation demonstrates
super-linear scaling, as the in-network sorting of the output
alignment is more e�cient than the in-memory sort (and
largely parallel). The HaplotypeCaller on the other hand
does not scale well past 10 nodes. We believe this is because
of the inherent nonuniform distribution of mutations in a
genome.

Figure 7 demonstrates the overall CPU and disk band-
width utilization of the IGen-based tools. Compared to Fig-
ure 2, we see that the our improvements to the data layouts
and representation have led to a significantly higher median
utilization of compute resources. Under IGen, we observe

that the peak disk bandwidth utilized is much higher than
previously (⇠ 1 GB/s compared to 10 MB/s for the Hap-
lotypeCaller). However, we also see some load imbalance
issues that contribute to significant variance in utilization
seen across multiple experiments. Also, we notice that us-
ing mmap for mapping the same file to multiple machines on
the network can lead to poor IO utilization. We believe
this is because concurrent writes into a commonly shared
file require synchronization across all nodes that have the
file mapped in memory. We plan to address these issues in
future work.

Tool TPR TPR

Confi-

dence

Interval

(95%)

FPR FPR

Confi-

dence

Interval

(95%)

GATK
Haplotype
Caller

99.1 0.6 2.1 ⇥
10�4

0.13 ⇥
10�5

IGen 99.03 0.7 2.31 ⇥
10�4

0.06 ⇥
10�5

Table 7: Statistical validation of the correctness of
the HaplotypeCaller algorithm implemented in IGen

In addition to the performance of these tools, our exper-
iments test the correctness of the IGen-based implementa-
tions. Our experiments use simulated data (with injected
mutations); hence the correct answers for alignments and
called variants are known to us ahead of time. We check the
answers of our implementation of the alignment algorithm
by doing a bit-wise comparison (of alignment index and the
CIGAR string) of the answers from IGen and SNAP. The
validation of the variant-calling algorithm is more involved,
as the output is dependant on the generation of a random
variable. We statistically test the correctness of the answer
by computing confidence intervals for the true positive and
false positive rates of the HaplotypeCaller and IGen imple-
mentations. In Table 7, we see that both of these intervals
have a significant overlap.

6. CONCLUSION
In this paper we presented the design of IGen, a framework

for e�cient and scalable genomic processing. We provided
the motivation for our design through measurements that re-
vealed bottlenecks in current variant-calling and genotyping
workflow and through a study of algorithms that showed the
presence of common mathematical kernels across a variety
of analyses. Finally, we demonstrated that by addressing
these performance bottlenecks, we can significantly improve
the performance of the variant-calling workflow.
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