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Abstract—This paper proposes a data-driven longitudinal
model that brings together factor graphs and learning methods
to demonstrate a significant improvement in predictability in
clinical outcomes of patients with major depressive disorder
treated with antidepressants. Using data from the Mayo Clinic
PGRN-AMPS trial and the STAR*D trial for validation, this
work makes two significant contributions in the context of
predictability in psychiatric therapeutic outcomes. First, we
establish symptom dynamics in response to antidepressants
by using the forward algorithm on a factor graph. Symptom
dynamics are the changes in the symptom severity that are
most likely to occur because of the antidepressants taken
during the trial, and the associated clinical outcomes at 4
weeks and 8 weeks into the trial. The structure of the factor
graph is inferred by using unsupervised learning to stratify
patients by the similarity of their overall symptom severity.
Second, by using metabolomics data as an accurate biological
measure in addition to symptom survey data and other patient
history information, the prediction of clinical outcomes such
as response and remission significantly improved from 30% to
68% in men, and from 35% to 72% in women. This work
demonstrates a significant difference in how men and women
respond to antidepressants in terms of their symptom dynam-
ics, and also shows that top predictors of clinical outcomes for
men and women are significantly different and known to play
a role in behavioral sciences.

1. Introduction

Major depressive disorder (MDD) affects over 350 mil-
lion patients worldwide [1]-[3]. Antidepressant medications
such as selective serotonin reuptake inhibitors (SSRIs) are the
primary options for pharmacotherapy in adults with MDD [4].
It is known that baseline data (prior to therapy) that consist of
1) social and demographic data (S in Table 1) and 2) clinical
data comprising the patient’s responses to questionnaires as
assessed by a clinician (C' in Table 1) do not have sufficient
predictive validity to guide clinical decision-making [4]-[9].
Unlike other major diseases, such as cancer or diabetes, MDD
currently has no validated biomarkers or other indicators that
can be used to predict antidepressant treatment outcomes.
To further the understanding of the pathophysiology of
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TABLE 1: Data (D = [S: C : B))

Total Patients: 603.
Men: Total: 222. With metabolomics: 99.
Women: Total: 381. With metabolomics: 191.

Social and demographic data (S) collected only at baseline

Age (in years)

Body mass index (BMI in kg/m?)

Depression in {parents, siblings, children}
Bipolar disorder in {parents, siblings, children}
Alcohol abuse by {parents, siblings, children}
Drug abuse by {parents, siblings, children}
Seasonal pattern in symptom occurrence
History of psychotherapy

Clinical data (C)

Clinician-rated Quick Inventory of Depressive Symptomatology
(QIDS-C) questionnaire (16 questions)
QIDS-C total score

Biological data (B)
31 metabolites from the HPLC LCECA platform

MDD, plasma metabolomic concentrations (B in Table 1)
from patients during three stages (at baseline, 4 weeks, and
8 weeks) of the trial was collected in the Mayo Clinic
Pharmacogeomics Research Network Antidepressant Medi-
cal Pharmacogenomic Study (Mayo PGRN-AMPS) clinical
trial [10] (the largest single-center trial in the USA), in
addition to social, demographic and clinical data. Using
these biological measures and existing validated clinical
measures for 603 patients x 65 variables collected across
three time-points in the Mayo PGRN-AMPS trial, this work
addresses two key questions: 1) what are the longitudinal
dynamics of symptoms in response to antidepressants, i.e.,
what changes to the symptom severity are most likely to occur
because of the antidepressants taken during the treatment,
and the associated clinical outcomes at 4 weeks and 8 weeks
into the trial? and 2) how much would the integration of
biological measures with validated clinical measures improve
the predictability in clinical outcomes of patients treated with
antidepressants? Data from the STAR*D trial [11], which
is the largest multi-center trial in the USA, are used for
validation of findings from the Mayo PGRN-AMPS trial.
While previous work has looked at integrating biological
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Figure 1: The proposed analyses to study symptom dynamics and predictability of clinical outcomes at 8 weeks.

data of multiple modalities to predict outcomes [12]-[15],
there remains an open problem of how biological measures
can be integrated with a patient’s response to a questionnaire
in the absence of existing biomarker knowledge.

The following are the main contributions of this work
as illustrated in Fig 1.

1) Patient stratification (Sec. 3): Model-based unsuper-
vised learning identified three distinct clusters of men
and women at all three time-points in the Mayo PGRN-
AMPS trial based on their overall symptom severity.
The patient stratification was statistically similar in the
STAR*D trial. The relevance of the clustering behavior
is seen at 8 weeks, at which point the three clusters
comprised all patients who 1) achieved remission,
2) demonstrated response but not remission, and 3)
demonstrated no response, and no remission respectively,
which agrees with the definitions of clinical outcomes
in psychiatry.

2) Longitudinal symptom dynamics model (Sec. 4): A
factor graph [16], [17] was developed to capture the
relationships between clusters of patients at consecutive
time-points of the trial and associated variables, such as
clinical outcomes, metabolomics and demographic data.
The choice of factor graphs was driven by their ability to
provide a compact expressive representation of random
variables and to subsume Bayesian networks, Markov
random fields (MRFs), and hidden Markov models [16],
[17]; further, they have been shown to be effective in
modeling longitudinal electronic health records data of
diabetic patients [18]. For a given level of symptom
severity prior to the treatment, the forward algorithm on
the inferred factor graph helped establish the symptom
dynamics. The symptom response to antidepressants
was observed to be identical in both trials, and the key
finding was that symptom dynamics were significantly
different in men and women.

3) Improved prediction of clinical outcomes by in-
tegrating metabolomics data (Sec. 5): This work
demonstrates that for both response and remission,
the addition of baseline metabolomics data to social,
demographic, and clinical data significantly increased
the predictability of clinical outcomes from 30% to 68%

in men, and from 35% to 72% in women. Metabolites
whose baseline concentrations were correlated with
the symptom severity at 8 weeks were chosen, then
normalized along with clinical and demographic data for
training supervised learning methods. The key finding
is that the top-predictors from the prediction model are
significantly different in men and women, and these
predictors are known to be associated with clinical
outcomes in psychiatry.

2. Data

The Mayo PGRN-AMPS trial was designed to assess
the clinical outcomes of adults (aged 18-84 years) with non-
psychotic MDD after 4 and 8 weeks of open-label treatment
with citalopram or escitalopram and to examine metabolomic
and genomic factors associated with those outcomes [10].
Subjects were recruited from primary and specialty care
settings in and near Rochester, MN from March 2005 to
May 2013. All psychiatric diagnoses were confirmed at the
screening visit using modules of the Structured Clinical
Interview for DSM-IV (SCID) administered by trained
clinical research staff. The data D = [S : C': B] analyzed
in this work comprise social and demographic variables
(.S), clinical measures (C'), and biological measures (B) are
tabulated in Table 1. The social and demographic data (.S)
were assessed only at baseline. The treatment outcomes were
established using the 16-item, clinician-rated version of the
Quick Inventory of Depressive Symptomatology (QIDS-C)
at baseline, 4 weeks and 8 weeks; the results comprised
the clinical data C, which included the responses to the
16 QIDS-C questions and the total QIDS-C score of the
symptom severity [19]. The biological data B comprised
31 metabolites from samples collected at baseline, 4 weeks,
and 8 weeks. Samples were assayed on a high-performance
liquid chromatography (HPLC) electrochemical coulometric
array (LCECA) platform to obtain the standardized measures
of concentrations of metabolites.

Clinical definitions: Response is defined as a 50%
reduction in baseline symptoms as measured at 4 weeks
or 8 weeks. If the total QIDS-C score measured at 8 weeks
is < 5, then the patient is said to have achieved remission.



3. Patient Stratification

To study the longitudinal behavior of depressive symp-
toms in response to antidepressants given a patient’s severity
at baseline, an understanding of how symptoms broadly
change in the trial is needed. To gain this understanding,
patients were stratified (clustered) based on their total QIDS-
C score, which is a measure of the severity of depression
symptoms in patients. The clusters will then help guide
the analytics needed to study the likely symptom dynamics
during the trial in a patient given his or her starting symptom
severity. Based on existing knowledge of gender differences
in response to antidepressants [20], the patients were stratified
separately by gender. Currently, there are no established
mechanisms in which patients with MDD are stratified and
has been limited by lack of access to data from large trials.

Observation: The p-value from the Shapiro-Wilk test of
the total QIDS-C score from all three time-points of the trial
and in both men and women, was less than the significance
level (a = 0.05). This meant that the symptom severity
scores were not normally distributed, as we rejected the null
hypothesis of the Shapiro-Wilk test (i.e., that the data are
normally distributed).

Approach: The fact that symptom severity are not
normality distributed meant that the k-means clustering
algorithm would not suitable as a clustering algorithm here.
Without a loss in generality, under the assumption that the
data (z: total QIDS-C score) was distributed as a mixture
of Gaussians (referred to as a Gaussian mixture model
(GMM)), we developed the patient stratification workflow
(Algorithm 1). Starting with an assumption that the data
have at least two components in the GMM, we used the
expectation maximization (EM) algorithm to estimate the
sufficient statistics parameters of the Gaussian components
(mean g and variance 2) of the GMM as shown in Fig. 2(a).
10,000 samples were randomly drawn from the inferred dis-
tributions (generateSamples). Next, the Kolmogorov-Smirnov
test (ks.test) was used to test whether the distribution of the
generated data was statistically similar to that of the original
data. If the p-value (p) was less than the significance level
(a = 0.05), then we would reject the null-hypothesis that
the two distributions are not similar. If that happened, the
number of components was increased by one, and tested
for similarity in the two distributions. Once the minimum
number of components K in the GMM was obtained for
which the generated and input data’s distributions are similar,
K clusters C = {C*;Vk € 1 : K} ordered by the increasing
mean (uy) of the components were the outputs of the
workflow [21]. Patients were assigned to the component
that maximizes the likelihood £(x) given the component’s
sufficient statistics (gmmCluster), illustrated in Fig. 2(b) and
described by Equation 1

argmax Ly, (x) where Ly(z) = N (x, uy, 0%). (1)
ke[1:K]

Results: At each time-point ¢ € {b(baseline), f(4 weeks),
e(8 weeks) }, we found three clusters of men and women as

Algorithm 1 Patient stratification

Input: x < Total QIDS-C Scores
1: k<« 2
2: C+ 0
3 a<+ 0.05
4: p<+0
5: while p < a do

6:  {m,0%} + EM(x, k)
7. 2’ + generateSamples (i, o2)
8:  p <+ ks.test(zx, )
9: if p > significanceLevel then
10: C + gmmCluster(y, o?)
11:  end if
122 k< k+1
13: end while
Output: C
0.12
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Figure 2: Fig. (a) illustrates the inference of mixtures comprising
the distribution of symptom severity scores. Fig. (b) illustrates
distribution of symptom severity within the clusters inferred using
the sufficient statistics of components inferred in Fig. (a).

shown in Fig. 3(a), in which the pie chart for each cluster
was positioned at the mean of the cluster’s average symptom
severity score. Clusters at the baseline are C, = {C},CZ,C31,
at 4 weeks are Cy = {C},C7,C}}, and at 8 weeks are
C. = {Cl,C2,C3}. The composition of the clusters at 4
weeks and 8 weeks based on the baseline cluster assignments
is captured in Fig. 3(a). It can be seen that a significant
majority of patients (96% of the 603) show reduction in
their symptoms at 4 weeks and 8 weeks. The clinical value
of the clustering behavior is that C} in both men and women
captures all patients who achieved remission at the end
of 8 weeks. Furthermore, the CE in both men and women
comprised patients who demonstrated response but did not
achieve remission. Finally, patients in C? in both men and
women did not exhibit response or achieve remission. The
same workflow demonstrated identical patient stratification
in the STAR*D trial, i.e., the Kolmogorov-Smirnov test for
symptom severity scores between clusters of similar average
symptom severity had p-value > 0.8. From the analytics
perspective, the significance of the replication of patient
stratification in two of the largest trials is that the clustering
behavior followed the existing definitions of clinical outcomes
in psychiatry. Patient stratification as we will see next, lays
the foundation to model the symptom dynamics.



Mayo PGRN-AMPS Trial: Patient Stratification by the QIDS-C Score
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Figure 3: Fig. (a) is the illustration of the three clusters of men and women inferred at all three time-points (baseline, 4 weeks and 8
weeks) of the trial. The pie charts at 4 weeks and 8 weeks illustrate the patient composition based on their cluster assignment at baseline.
Patient stratification can then be used to form the factor graph as shown in Fig. (b). The graph is bipartite, with patient stratification (one
set of nodes) and factor functions (the other set of nodes) that capture relationships between the symptom severity associated with the

stratification and other data.

4. Using Factor Graphs to Model Symptom
Dynamics

Patient stratification (clusters) was obtained using only
the symptom severity scores, which allowed us to establish
broader ranges of symptom severity in the trial. This stratifi-
cation will now be used to establish the symptom dynamics
in response to the antidepressants. Symptom dynamics in this
work is defined as the likely changes in a patient’s symptoms
and associated clinical outcomes during the various stages
of the trial (e.g., response at 4 weeks or 8 weeks) while he
or she is treated with antidepressants.

Factor graph from patient stratification: The factor
graph(for men and women separately) is a bipartite graph
G = (V,F) (we created separate factor graphs for men
and women). The graph has three layers at each time point
as illustrated in Fig. 3(b); the clinical observation layer
where the clinician observes the clinical outcome based on
symptom severity, patient symptom response layer that keeps
track of changes in symptoms and the patient stratification
layer to illustrate what cluster a patient’s symptom score
belongs to. Each layer is associated one variable node € V
such as O (distribution of patients who demonstrate response
(R) vs no response (NR)), X (symptom measure at each
time point), C (patient stratification at each time point) and
one associated factor node € F such as a decision rule
to determine if a patient has demonstrated response (50%
reduction in symptom from baseline) for random variable O,
a transition probability matrix for symptom severity between
two time points for random variable X', and what cluster C
the patient belongs to based on his or her current symptom
severity score X. The graph can be evaluated at each time
point of the trial ¢ € T starting from baseline (¢) to 4 weeks
(t+ 1) to 8 weeks (t + 2) and so on.

The maximum likelihood symptom response to an-
tidepressants: We use the forward algorithm [16], [17]

to identify the most likely forward transitions a patient
starting in any baseline cluster will make between clusters
(hidden states —C) of the trial, and also what the associated
clinical outcomes will be during the transitions (observed
states —(). During transitions between the clusters, the clin-
ician/psychiatrist assessing the patient observes the clinical
outcome O = {Og,Ong}, which is that the patient has
demonstrated either Ogr—response, or Ong— no-response.
For both men and women, the graph with the number of
patients (n), forward transitions, and observed outcomes
O = {Ogr,OnRg} in each cluster are illustrated in Fig. 4(a),
which is similar in construct to a hidden Markov model
(HMM). Now, the symptom dynamics for any patient starting
in any of the clusters at baseline can be solved recursively
using the forward algorithm which is described as,

Po(C) = p(OIC) Po(Ci-1)p(Ci1 — Co),

teT

@)

where p(O|C;) is the probability of the observation (response
or no-response) in a current state, p(C;—; — C;) is the
probability of a transition from a state of a previous time-
point to a state of the current time-point (e.g., C; — C7),
and Pn(Ci;—1) is the path probability for a given set of
observations O seen until C;_.

Note that, the reduction from the factor graph to the
HMM did not simplify the complexity of solving the forward
algorithm, but rather allowed us to explain the symptom
dynamics not only as a function of how symptoms change, but
also with the changes in symptoms, what are the associated
clinical outcomes during various time-points of the trial.

Results: For every cluster starting at the baseline, the
path probabilities for all possible combinations of paths and
observations to get to a state at 8 weeks were computed
using Equation 2. For each starting cluster at baseline, we
chose the path that had the highest probability of ending
at each of the clusters at 8 weeks and also at least 20%
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Figure 4: Symptom dynamics using HMM. Fig. (a) illustrates the HMM of the symptom dynamics in men and women; Fig. (b) illustrates
the inferred most likely symptom dynamics based on the cluster in which each patient starts in the trial. Thicker lines indicate a larger
proportion of patients from the originating cluster taking a particular path.

of the cohort in the path, so that we do not choose paths
of symptom changes that only a few patients take, which
renders lesser statistical power. For example, for patients
starting in C}, we inferred the best path to {C!,C2,C3} and
the associated outcomes that maximize the path probabilities
as shown in Fig. 4(b). The interpretation of the results are
as follows.

Men:

1y

2)

A majority of the men starting in C} will most likely
respond at 4 weeks, and they will most-likely go on
to achieve remission (and demonstrate response) at 8
weeks. However, if they do not respond at 4 weeks,
they will likely not respond at 8 weeks either.

A majority of the men starting in C7 at baseline will
most likely not respond at 4 weeks, will also not respond
at 8 weeks. However, if they respond at 4 weeks, they



will likely achieve remission at 8 weeks.

3) Men starting in C; at baseline are not likely to respond
at 4 weeks, but two-thirds of them respond by the end
of 8 weeks.

‘Women:

1) Regardless of where women start at baseline, if they
respond by the end of 4 weeks, they are almost certain
to achieve remission at 8 weeks.

2) If women starting in C} do not respond at 4 weeks,
they will likely not respond at 8 weeks either.

3) A majority of the women starting in C? at baseline will
most likely not respond at 4 weeks, and are more likely
to respond at 8 weeks and have moderate symptoms
(cg), than have relatively more severe symptoms (C?).

To the best of our knowledge, this is the first work
that formally establishes the symptom dynamics in major
depressive disorder. We will discuss the clinical implications
of these paths in Sec. 6.

5. Using Baseline Data to Predict Clinical Out-
comes

Having identified the most likely symptom responses to
antidepressants, we focus on predicting clinical outcomes
using only baseline data. The developed factor graph for
modeling symptom dynamics allows for integration of
metabolomics data for each of the clusters through use of
more complicated factor functions for predicting which state
the patient could fall into after 8 weeks of treatment. Now, we
also know that in general, the inferred clusters of patients map
well to the cohorts classified according to known psychiatric
definitions, such as those of responders vs non-responders
(C2 vs. the rest) and remitters vs. non-remitters (C} vs. the
rest). The metabolomics data was collected from a smaller
cohort of the Mayo PGRN-AMPS trial, which meant that for
some clusters we only had less than 10 patients, rendering
limited statistical power. Hence we decided to train two
binary prediction models to predict 1) whether a patient will
demonstrate either response or no response, and 2) whether
remission or no remission will be achieved at the end of 8
weeks.

Recent work proposed a prediction model that uses
elastic-net regularization for feature selection and a gradient
boosting machine (GBM) for classification, but only using
baseline social, demographic, and clinical data from the
STAR*D trial [22]. While their prediction accuracies were
better than chance, the authors acknowledge the limitations
of their work, which suggests that it might be worthwhile to
study whether the addition of baseline biological measures
together with the social, demographic, and clinical data
would increase the predictability of the clinical outcomes.
With access to metabolomics data on a smaller cohort of
the Mayo PGRN-AMPS trial, we set out to test whether
a similar combination of feature selection and a classifier
could improve the predictability of clinical outcomes.

Feature selection and choice of classifiers: Three
classes of classifiers are used in this work, including kernel,

linear, and ensemble methods. We used support vector
machines with linear kernels (SVMLinear) and support vector
machines that use radial-basis kernels (SVM-RBF) as kernel
methods [23], a generalized linear model (GLM) as a linear
method [24] and gradient-boosting machines (GBM) as an
ensemble method [25]. As authors of these methods have
indicated, each of these broader types has their own merits,
mathematical nuances, and complexities, and all of them
have been used in other classification applications, such as
in Kaggle [26].

In addition to elastic-net regularization, recursive feature
elimination (i.e., a wrapper method) was also used for the
GLM and GBM classifiers that made it possible to estimate
the model performance by not only optimizing the parameters
of the model, but also by searching for the right set of
predictor variables. Based on our datasets, the prediction
performance did not significantly vary with or without the
use of any of the feature selection methods; the prediction
accuracy remained within 4%.

Furthermore, to address the bias-variance tradeoffs, we
performed tenfold cross-validation with 3 repeats and an ex-
pansive grid-search for the parameter space for the classifiers
in order to train the classifiers on 80% of the overall data;
the remaining 20% was used for testing the trained models.
A combination of the overall accuracy i.e., the fraction of
labels that were correctly predicted) and the area under the
receiver operating characteristic curve (AUC) metric was
used to choose the training model [27]. We also computed
the sensitivity and specificity of the prediction models.

Training with and without biological measures: In
order to quantitatively assess the benefit of adding biological
measures to predict outcomes, we trained classifiers using
1) baseline clinical data that included only social and demo-
graphic data, X = [S : C]; and 2) all baseline data (including
metabolomics data), X = [S : C': B]. Metabolites whose
baseline concentrations were correlated with the symptom
severity at 8 weeks were chosen, and then normalized along
with clinical and demographic data in order to train the cho-
sen supervised learning methods. Since the clinical data were
assessed on all the Mayo PGRN-AMPS trial by the same
four physicians, we believe that the proposed mechanism of
combining clinical data with biological measures will not
result in the loss of any underlying characteristics of either
type of the data. Several other researchers have proposed
the combination other modalities of biological data, but not
together with clinical data that includes a significant amount
of a patient responses to symptom questionnaire [12]-[14].
The limitations in those proposals are that either biological
measures of the same type are fused with data from various
sources, or different biological measures are combined based
on existing biological knowledge in the context of the
disease. Therefore, to the best of our knowledge, this is
the first time a more accurate biological measure in the
context of psychiatry has been integrated for analyses with
the clinical measures that comprise demographic data and
patient-provided responses to symptom questionnaire. For
all the classifiers, we compared the AUC, in addition to the
generalized prediction accuracies to see if the same models



TABLE 2: Clinical outcome prediction performance for men in Mayo Clinic PGRN-AMPS trial. Expansion of abbreviations of the top
predictors are as follows, ATOCO is (+)-alpha-Tocopherol; URIC is Uric acid; QIDS-1 is sleep-onset insomnia [19]; KYN is Kynurenine;
30HKY is 3-Hydroxykynurenine; AMTRP is Alpha-methyltryptophan; I3PA is Indole-3-propionic acid; GTOCO3 is (+)-gamma-Tocopherol

(redox state #3); SHT is serotonin.

RESPONSE
Data Clinical Data Only Clinical and Metabolomics Data Top Predictors: GLM
Model | SVM-RBF | SVM-Linear | GLM | GBM | SVM-RBF | SVM-Linear | GLM | GBM | ATOCO
Accuracy | 28.2 32 52 40 48 48 64 48 URIC
Sensitivity | 0 16.67 16.67 | 33.33 | 33.33 33.33 50 33.33 | QIDS-1
Specificity | 53.5 46.15 84.62 | 46.15 | 61.54 61.54 61.54 [ 61.54 | KYN
AUC | 0.64 0.60 0.63 0.54 0.53 0.53 0.68 0.5 30HKY
REMISSION
Data Clinical Data Only Clinical and Metabolomics Data Top Predictors: SVM-Linear
Model | SVM-RBF | SVM-Linear | GLM | GBM | SVM-RBF | SVM-Linear | GLM | GBM | AMTRP
Accuracy | 28 44 44 48 64 68 64 45.65 | I3PA
Sensitivity | 38.46 38 53.85 | 46.15 | 76.52 76 76.92 | 65.22 | Drug dosage
Specificity | 16.67 50 3333 | 50 50 50 50 26.09 | GTOCO3
AUC | 0.8 0.6 0.67 0.6 0.76 0.78 0.62 0.6 SHT

TABLE 3: Clinical outcome prediction performance for women in Mayo Clinic PGRN-AMPS trial. Expansion of abbreviations of the top
predictors are as follows SHT is Serotonin; MHPG is Methoxy-Hydroxyphenly Glycol; MET is Methionine; QIDS-13 is involvement [19];
HGA is Homogentisic Acid; 30HKY is 3-Hydroxykynurenine; PARAXAN is 1,7-diMethylxanthine.

RESPONSE
Data Clinical Data Only Clinical and Metabolomics Data Top Predictors: SVM-Linear & GLM
Model | SVM-RBF | SVM-Linear | GLM | GBM | SVM-RBF | SVM-Linear | GLM GBM | Seasonal Pattern
Accuracy | 52.08 52.08 54.17 | 50 41.3 72.33 64.58 | 41.67 | SHT
Sensitivity | I8.18 18.18 27.27 | 18.18 | 34.78 18.18 36.36 | 0 MHPG
Specificity | 80.72 80.76 7692 | 76.9 47.83 92.83 88.46 | 76 MET
AUC | 0.60 0.59 0.63 0.63 0.69 0.74 0.68 0.49 QIDS-13
REMISSION
Data Clinical Data Only Clinical and Metabolomics Data Top Predictors: SVM-Linear
Model | SVM-RBF | SVM-Linear | GLM | GBM | SVM-RBF | SVM-Linear | GLM GBM | 5HT
Accuracy | 34.78 50 45.65 | 3696 | 41.3 54.33 52.17 45.65 | HGA
Sensitivity | 26.09 65.22 56.52 | 47.83 | 34.78 56.52 76.92 6522 | 30HKY
Specificity | 43.48 3478 34778 | 26.09 | 47.83 52.17 50 26.09 | Seasonal Pattern
AUC | 0.64 0.48 0.42 0.58 0.56 0.53 0.53 0.47 PARAXAN

predictive ability improved with the addition of metabolomics
data. Further, if the predictability improved, we extracted
the top five predictors of the model that provided the best
balance of accuracy and AUC to see if the top predictors
were dominated by the metabolomics.

Results: As shown in Tables 2 and 3, for both men
and women and for both outcomes response and remission,
at least 3 of the 4 methods showed an improvement of
the AUC and the corresponding overall accuracy, i.e., the
proportion of samples correctly predicted with the addition
of the metabolomics data. The highlighted columns in
Tables. 2 and 3 indicate the best-performing models with the
metabolomics data included; 4 out of the 5 predictors are
metabolites, indicating that their addition to the prediction
model likely explains the increase in the predictability of
the outcomes. Top predictor metabolites were also different
in men and women, pointing to a likely different biological
mechanism in how men and women respond to the same
antidepressant. Further, many of the top predictor metabolites
identified in this work are known to be correlated with mood
in behavioral sciences, which leads to additional promising
implications as discussed next.

6. From Analytics to the Clinical Implications

Patient stratification conforming to known psychiatric def-
initions of outcomes and replicated in both the Mayo PGRN-
AMPS and STAR*D trial provided a first show of confidence
in modeling symptom responses to citalopram/escitalopram
(antidepressant) treatment in depressed patients. The fac-
tor graph model was able to show potentially important
clinical differences between men and women in depressive
symptom behavior over time under antidepressant treatment.
The unique patterns of symptom dynamics we found in
men and women will add to the psychiatric community’s
increasing evidence of sex differences in terms of responses
to treatment in patients with major depression. Our focus on
remission, which is defined clinically as a relative absence of
depressive symptoms, was motivated by the fact that failure
to achieve remission is associated with ongoing difficulties
with psychosocial functioning owing to residual depressive
symptoms, and higher odds of full depressive relapses, even
for patients who achieve a positive response. For women,
achieving response to antidepressant treatment at 4 weeks
strongly predicted remission at 8§ weeks regardless of baseline
depressive symptom severity. For men, the same was also
true, but only for those in the low (CZ}) and moderate (Cf)
symptom clusters at baseline. In those groups, failure to




achieve response at 4 weeks was highly predictive of a lack of
remission at 8 weeks, with the only exception being for men
in the most severe symptom cluster at baseline (Cj). In that
group of men with more severe depression at baseline, the
odds of response at 4 weeks were low; however, two-thirds
of these individuals either responded or remitted by week 8.
In general, our results support clinical recommendations for
examining depressive symptoms after 4-6 weeks of treatment
before judging the clinical effects of antidepressant treatment.
Our results suggest that ascertaining clinical effects of an
antidepressant at 4 weeks may be especially reasonable for
women, regardless of their baseline symptom severity, and
for men with milder-to-moderate depressive symptoms at
baseline. For men with more severe depression at the start
of treatment, the time window may need to be extended
beyond 4 weeks before the full effects of treatment with
antidepressant at a given dose can be judged.

On two other fronts, this preliminary study of evaluating
the predictability of outcomes when metabolomics data
are added as a biological measure has been promising.
First, there was an overall improvement in the accuracy of
predictions, and second, known metabolites were found to be
among the top predictors of the outcomes. Specifically, for
decades the treatment of MDD has focused on biogenic
amine neurotransmitter pathways, i.e., the synthesis and
metabolism of catecholamines such as norepinephrine and
indoleamines such as serotonin [28]. Furthermore, existing
body of knowledge fits well with the findings of our study;
note that the metabolites listed in Tables 2 and 3 include
serotonin (SHT) itself as well as two metabolites from
the competing tryptophan metabolism pathway (KYN and
30HKYN) and the major catecholamine metabolite (MHPG),
which are known to play a role in behavioral sciences. Given
these findings, we are aware of the biases introduced by
choosing complete cases and the data analyzed are not from
randomized controlled trials.

7. Conclusions and Future Work

Data-driven analytics using factor graphs and a variety of
learning methods based on data from two of the largest trials
in major depressive disorder established consistent stratifica-
tion of patients and establish symptom dynamics in depressed
patients treated with antidepressants. These findings agreed
with existing definitions of psychiatric outcomes and results
were replicated in two of the largest clinical trials in the USA.
Furthermore, addition of biological measures such as the
metabolomics to baseline social, demographic and clinical
data significantly improved predictability in clinical outcomes
at 8 weeks. Top predictors were significantly different in
men and women, and were known to be coming from
metabolomism pathways known to the psychiatric community.
These results also suggest several questions that we will
strive to answer in the course of our future work. First, are
the clusters of patients in associated with any of the social,
demographic and clinical factors? Second, are such associ-
ations related to any baseline metabolomic concentrations
that could improve the predictability of outcomes? Finally,

whether the baseline metabolomics data alone might better
predict clinical outcomes?

8. Tool Implementation and Availability

The analyses’ workflow was developed in R, version
3.2.2. The workflow has been tested on and is compatible
with Linux (Ubuntu 14 and later), OS X (Yosemite and later)
and Windows (Windows 7 and later) operating systems.
Further, in addition to being compatible with Intel’s x86
architectures, this workflow is also compatible with the
Power Architecture, and was tested on the IBM POWERS
processors, establishing that our tool is agnostic with respect
to common, state-of-the-art high-performance computing
platforms. The platforms and operating-system agnostic
characteristics of our workflow means that it can easily be
integrated into larger metabolomics studies, and other -omics
data such as the genomics (genotype), both on stand-alone
machines and in the cloud.

9. Related Work

Patient stratification in itself is not a new concept in
medicine or clinical research, however, given the inter-patient
variability in the symptoms assessed in patients with MDD,
there has been no clear definition of patient stratification in
terms of their symptom severity. Since studying symptom
dynamics needs the general grouping of patients in a trial,
without patient stratification, there are also no models to
study the symptom dynamics in patients with MDD treated
with antidepressants. Hence, to the best of our knowledge,
this work presents a new contribution to the existing body of
literature in psychiatry, that demonstrated shown cross-trial
validation.

Integration of multi-modal biological data has been
proposed in the context of breast cancer, diabetes, glioblas-
toma and other diseases [12]-[15]. For example, combining
imaging data with gene expression and patient demographics
data to better predict the prevalence of cancer [15]. These
aforementioned works have looked at identifying unique
biological signatures or biomarkers from each of the types
of static data, and then building a function that linearly or
non-linearly combines the data into a rule-based decision
system. However, in diseases such as MDD where symptoms
change with time due to the therapeutic design, then models
need to incorporate the time dimension as well. Furthermore,
in diseases like MDD where symptom assessment is subject
to differences in inter-patient variability, models need to be
amenable to rely more on the accurate biological measures
while still considering effects of symptom response. Address-
ing these needs, the stratification used clinician’s ratings of
total symptom severity and minimized the effects of inter-
patient variability in assessing the response to symptom
questionnaire. This approach proved to be valuable because
of the ability to replicate the stratification and symptom
dynamics in two of the largest clinical trials in USA. While
our current approach to integrate the biological measure



such as metabolomics with clinical measures is simple due to
limited data, the predictability and the biological significance
of predictor metabolites in the context of psychiatry is
promising and encourages us to collect and analyze more
data to further the understanding of what mechanisms drive
response to antidepressants.
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