BayesPerf: Minimizing Performance Monitoring Errors Using Bayesian Statistics
Extended Abstract

Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer
University of Illionis at Urbana-Champaign

1. Motivation

Hardware performance counters (HPCs) are widely used in
profiling applications to characterize and find bottlenecks in
application performance. Even though HPCs can count hun-
dreds of different types of architectural and microarchitectural
events, they are limited because those events are collected (i.e.,
multiplexed) on a fixed number of hardware registers (usually
4—10 per core). As a result, they are error-prone because of
application, sampling, and asynchronous collection behaviors
that are a result of multiplexing. Such behavior in HPC mea-
surements is not a new problem, and has been known for the
better part of a decade [1,8,16,17,22,23,24].

This paper presents BayesPerf, a system for quantifying un-
certainty and correcting errors in HPC measurements using a
Bayesian model that captures microarchitectural relationships
between HPCs. BayesPerf corrects HPC measurement errors
at the system (i.e., CPU and OS) level, thereby allowing the
down stream control and decision models that use HPCs to be
simpler and faster and use less training data when used with
machine learning (ML). The proposed model is based on the
insight that even though individual HPC measurements might
be in error, groups of different HPC measurements that are
related to one another can be jointly considered) to reduce
the measurement errors (using the underlying statistical rela-
tionships between the HPC measurements. We derive such
relationships by using design and implementation knowledge
of the microarchitectural resources provided by CPU ven-
dors [4, 13]. For example, the number of LLC misses, the
number and size of DMA transactions, and the DRAM band-
width utilization are related quantities,' and can be used to
reduce measurement errors in each other.

2. Limitations of the State of the Art

Traditional approaches of tackling HPC errors have relied on
collecting measurements across several application runs, and
then performing offline computations to (i) impute missing or
erroroneous measurements with new values (e.g., [21,23]); or
(i) drop outlier values to reduce overall error (e.g., [16]). The
first group of methods artificially imputes data in the collected
samples by interpolating between two sampled events using
linear or piece wise linear interpolation, e.g., the default in
Linux [21]. The advantage of such interpolation methods is
that they can be run in real time: however, they might not
provide good imputations [24]. The second group of methods
correct measurements by dropping outlier values, instead of

I'DRAM Bandwidth = (LLC missed x Cache line size+ # DMA Transac-
tions x Transaction size)/Clocks.

A (a)

Mem BW
Memory BW

LLCM

20 40 60 80 100

LLC Misses
Figure 1: Quantifying Uncertainty in HPC Measurements

adding new interpolated values. Such methods are at the other
extreme: they cannot be run in real time, as they need the
entire trace of an application before they provide corrections.
They are untenable in emergent applications that use HPCs
as inputs to complete a feedback loop (using control-based
or ML-based techniques) and make dynamic real-time deci-
sions that affect system resources. Examples include online
performance hotspot identification (e.g., [10]), userspace or
runtime-level scheduling (e.g., [2,3,7, 11,24]), and power and
energy management (e.g., [9, 18, 19,20]), as well as attack
detectors and system integrity monitors [5]. In such cases,
the HPC measurement errors propagate, get exaggerated, and
can lead to longer training time and poor decision quality.
That is unsurprising because ML systems are known to be
sensitive to small changes in their inputs (e.g., in adversarial
ML) [6, 12, 14]. As we show in the paper, HPC measurement
errors can be large (as much as 58%); hence, they must be
explicitly handled.

3. Key Insights

* Probabilistic Error Detection: The critical insight that
drives this work is that microarchitectural invariants can
be applied to measured HPC data to estimate whether
the data are, in fact, erroroneous. Consider a toy exam-
ple in which two performance counters, DRAM Bandwidth
(DB) (from a memory controller) and LLC Cache Misses
(LLcM), are counted. Assuming there is no DMA traf-
fic, the HPCs should always be related through the rela-
tion DB = LLCM X CacheLineSize/1nterval, where Interval
is the time over which the bandwidth is computed (shown
in Fig. 1(a)). When presented with data that do not fit
that model (i.e., do not satisfy the equation), we can be
certain that there are measurement errors. To quantify the
magnitude of the error, we assume that the two HPCs are
random variables (real values with added noise/error), and
we calculate the probability of deviation from the above
equation. The uncertainty of the measured data is illustrated
in Fig. 1(b) as the color bar, which represents the likelihood



of occurrence.

* Defining Invariants: Further, the invariants described above
can have transitive relationships, depending on the microar-
chitectural component of the system they are profiling. In
the example, a count of L1/L.2 misses can provide statis-
tical support for the values measured for LLCM, i.e., we
know that correct values of the counters would satisfy
L1M > 12M > LLCM. Those microarchitecture-dependent
invariants are automatically extracted from vendor-provided
manuals [4, 13] or from machine-parsable JSON files in the
Linux source tree [21]. BayesPerf expresses the composi-
tion of all such invariants as a joint probability distribution
over all HPC measurements of interest and uses the pop-
ular probabilistic graphical model formalism to infer the
measurement uncertainty.

o Inferring Correct Value (Error Correction): We finally use
Bayesian inference and maximum likelihood estimation ap-
proach to integrate the data and prior knowledge (i.e., sta-
tistical relationships) of the system to attenuate the highly
erroneous measurements (that cause high uncertainty) effec-
tively and significantly amplify correct measurements (that
results in low uncertainty) in real-time. That is the reason
we are able to significantly outperform traditional, purely
data-driven statistical approaches for outlier detection.

4. Main Artifacts

* A Bayesian-ML model, training, and inference strategies
for detecting and correcting HPC errors.

* A prototype implementation of a system that integrates the
ML model into the Linux perf_event subsystem. It in-
cludes a design for an FPGA-based accelerator to enable
real-time inference of the proposed ML model.

* A benchmark application based on Apache Spark that uses
BayesPerf-corrected HPC measurements in a control loop
to actuate PCle transfers.

* The artifacts were evaluated on two real systems, including
x86 (Intel BroadwellX) and ppc64 (IBM Power 9) CPUs,
using a Xilinx Ultrascale+ FPGA.

5. Key Results and Contributions

* The BayesPerf ML Model. We present a probabilistic ML
model that incorporates microarchitectural domain knowl-
edge to combine measurements from several noisy HPCs to
infer their true values, as well as quantify the uncertainty in
the inferred values due to measurement noise. The model
enables:

1. Decision-making with explicit quantification of HPC
measurement uncertainty.

2. Reduced need for aggressive (high-frequency) HPC
sampling (which negatively impacts application perfor-
mance) to capture high-fidelity measurements, thereby
increasing the system’s observability.

Although we demonstrate the model for a CPU-based HPC,

the algorithm is generic and not limited to CPUs. It can
be extended for any hardware-counter-based measurements
(e.g., from the Berkeley Packet Filter), which are becoming
an integral part of measurements in Linux systems.
* The BayesPerf Accelerator. To enable use of the BayesPerf
ML model in latency-critical, real-time decision-making
tasks, this paper presents the design and implementation of
an accelerator for Monte Carlo-based training and inference
of the BayesPerf model. The accelerator exploits:
1. High-throughput random-number generators.
2. Maximal parallelism to rapidly sample conditionally in-
dependent parts of the model.
A Prototype Implementation. We describe an FPGA-based
prototype implementation of the BayesPerf system (on a
Xilinx Virtex 7 FPGA) on a Linux-based Intel x86 Sky
Lake and IBM Power9 processor. The BayesPerf system is
designed to provide API compatibility with Linux’s perf
subsystem [15], allowing it to be used by any userspace
performance-monitoring tool for both x86 and ppc64 sys-
tems. Our experiments demonstrate that BayesPerf reduces
the average error in HPC measurements by as much as
5.39x% (i.e., from 42.11% to 7.8%) when events are being
multiplexed. The BayesPerf accelerator provides an 11.8x
reduction in power consumption, while adding less than 2%
read latency overhead over native HPC sampling.
¢ Increasing Training and Model Efficiency of Decision-
making Tasks. We demonstrated the generality of the
BayesPerf system by integrating it with a high-level ML-
based IO scheduler that controls transfers over a PCle inter-
connect. We observed that the training time for the scheduler
was reduced by 34% and the average makespan of scheduled
workloads decreased by 19%.

6. Why ASPLOS?

This paper describes multi disciplinary research incorporating

innovations in:

* ML (i.e., the BayesPerf model and inference strategy);

* Operating Systems (i.e., the transparent integration of the
BayesPerf model into Linux, allowing it to be used by any
process capable of using profiling data); and

* Architecture (i.e., the design and implementation of the
BayesPerf accelerator to enable real-time inference).

ASPLOS is hence an ideal venue for showcasing this research.

7. Citation for Most Influential Paper Award

The BayesPerf system represents innovative work for detect-
ing and correcting errors in hardware performance counters.
The system is workhorse for a wide range of measurement-
driven feedback techniques (like those that use control theory
or ML to control system resources) for which low-variance,
low-noise measurement data are critical for making accurate
predictions, thereby making those models robust, efficient,
and easier (faster) to train.



References

[1]

[2]

[3]

[4]

[5]

[6

=

[7

—

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hard-
ware performance counters with flow and context sensitive profiling.
SIGPLAN Not., 32(5):85-96, May 1997.

Subho S. Banerjee, Saurabh Jha, and Ravishankar K. Iyer. Inductive
bias-driven reinforcement learning for efficient schedules in heteroge-
neous clusters. CoRR, abs/1909.02119, 2019.

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schiipbach,
and Akhilesh Singhania. The multikernel: A new os architecture for
scalable multicore systems. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09, pages 2944,
New York, NY, USA, 2009. ACM.

Intel Corp. Intel® 64 and IA-32 Architectures Software Developer
Manuals. https://software.intel.com/en-us/articles/
intel-sdm, 2016. Accessed 2019-03-05.

S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose.
Sok: The challenges, pitfalls, and perils of using hardware performance
counters for security. In 2019 IEEE Symposium on Security and Privacy
(SP), pages 20-38, May 2019.

Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman. Out of
control: Stealthy attacks against robotic vehicles protected by control-
based techniques. In Proceedings of the 35th Annual Computer Security
Applications Conference, ACSAC ’19, page 660—-672, New York, NY,
USA, 2019. Association for Computing Machinery.

Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In Proceedings of the Eigh-
teenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS *13, pages 77-88,
New York, NY, USA, 2013. ACM.

M. Dimakopoulou, S. Eranian, N. Koziris, and N. Bambos. Reliable
and efficient performance monitoring in linux. In SC ’16: Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 396—408, Nov 2016.

Yi Ding, Nikita Mishra, and Henry Hoffmann. Generative and multi-
phase learning for computer systems optimization. In Proceedings of
the 46th International Symposium on Computer Architecture, ISCA
’19, pages 39-52, New York, NY, USA, 2019. ACM.

Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. Seer: Leveraging big data to
navigate the complexity of performance debugging in cloud microser-
vices. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS 19, pages 19-33, New York, NY, USA, 2019.
ACM.

Jana Giceva, Gustavo Alonso, Timothy Roscoe, and Tim Harris. De-
ployment of query plans on multicores. Proc. VLDB Endow., 8(3):233—
244, November 2014.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 27, pages 2672-2680. Curran Associates, Inc.,
2014.

Brian Hall, Peter Bergner, Alon Shalev Housfater, Madhusudanan
Kandasamy, Tulio Magno, Alex Mericas, Steve Munroe, Mauricio
Oliveira, Bill Schmidt, Will Schmidt, et al. Performance optimization
and tuning techniques for IBM Power Systems processors including
IBM POWERS. 1BM Redbooks, 2017.

Saurabh Jha, Shengkun Cui, Subho S Banerjee, Timothy Tsai, Zbig-
niew T Kalbarczyk, and Ravishankar K Iyer. ML-driven Malware for
Targeting AV Safety. In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 2020.
Linux Community. perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.php/Main_Page, 2019
[Online; accessed 19-November-2019].

Y. Lv, B. Sun, Q. Luo, J. Wang, Z. Yu, and X. Qian. Counterminer:
Mining big performance data from hardware counters. In 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 613-626, Oct 2018.

T. Mytkowicz, P. F. Sweeney, M. Hauswirth, and A. Diwan. Time
interpolation: So many metrics, so few registers. In 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO
2007), pages 286-300, Dec 2007.

R. P. Pothukuchi, S. Y. Pothukuchi, P. Voulgaris, and J. Torrellas.
Yukta: Multilayer resource controllers to maximize efficiency. In
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 505-518, June 2018.

[19]

[20]

[21]

[22]

[23]

[24]

Raghavendra Pradyumna Pothukuchi, Joseph L. Greathouse, Karthik
Rao, Christopher Erb, Leonardo Piga, Petros G. Voulgaris, and Josep
Torrellas. Tangram: Integrated control of heterogeneous computers. In
Proceedings of the 52Nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO °52, pages 384-398, New York, NY,
USA, 2019. ACM.

Stephen J. Tarsa, Rangeen Basu Roy Chowdhury, Julien Sebot, Gau-
tham Chinya, Jayesh Gaur, Karthik Sankaranarayanan, Chit-Kwan Lin,
Robert Chappell, Ronak Singhal, and Hong Wang. Post-silicon cpu
adaptation made practical using machine learning. In Proceedings of
the 46th International Symposium on Computer Architecture, ISCA
’19, pages 14-26, New York, NY, USA, 2019. ACM.

Linus Torvald. Linux Perf Subsystem Userspace Tools.
https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/tools/perf/pmu-events/arch
2020. Accessed 2020-03-05.

V. M. Weaver, D. Terpstra, and S. Moore. Non-determinism and
overcount on modern hardware performance counter implementations.
In 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 215-224, April 2013.

Vincent M Weaver and Sally A McKee. Can hardware performance
counters be trusted? In 2008 IEEE International Symposium on
Workload Characterization, pages 141-150. IEEE, 2008.

Gerd Zellweger, Denny Lin, and Timothy Roscoe. So many perfor-
mance events, so little time. In Proceedings of the 7th ACM SIGOPS
Asia-Pacific Workshop on Systems, APSys *16, pages 14:1-14:9, New
York, NY, USA, 2016. ACM.


https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://perf.wiki.kernel.org/index.php/Main_Page
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/pmu-events/arch
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/perf/pmu-events/arch

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS?
	Citation for Most Influential Paper Award

