I ILLINOIS

CSL | Coordinated Subho S. Banerjee, Zbigniew T. Kalbarczyk and Ravishankar K. lyer

SCIQHCG Lab Computer Science, Electrical and Computer Englnearlll?(g:

COLLEGE OF ENGINEERING

AcMC?: Accelerated Markov Chain Monte Carlo
for Probabilistic Models

ASPLOS 2019




L ILLINOIS
CSL | Coordinated Science Lab

Probabilistic Models: Core of Many Al Apps

* Probabilistic modeling: integrates domain knowledge, quantifies uncertainties



1T ILLINOIS _ |
CSL | Coordinated Science Lab ()

Probabilistic Models: Core of Many Al Apps

* Probabilistic modeling: integrates domain knowledge, quantifies uncertainties

* Probabilistic programs: Encode probability models



I ILLINOIS

CSL | Coordinated Science Lab

Probabilistic Models: Core of Many Al Apps

* Probabilistic modeling: integrates domain knowledge, quantifies uncertainties

* Probabilistic programs: Encode probability models

72 XBOX LIVE

Get advanced multiy
exclusive discounts, 360

ultiplayer, free games and
xOn

Sensor Fusion in Self Driving Vehicles Skill Matching in Online Gaming 4G or 5G Communication Devices
(TrueSkill 1&2 from Microsoft) (Turbo/LDPC Codes)



I ILLINOIS

CSL | Coordinated Science Lab

Probabilistic Models: Core of Many Al Apps

* Probabilistic modeling: integrates domain knowledge, quantifies uncertainties

* Probabilistic programs: Encode probability models

12 XBOX LIVE
GOLD
Sensor Fusion in Self Driving Vehicles Skill Matching in Online Gaming 4G or 5G Communication Devices
(TrueSkill 1&2 from Microsoft) (Turbo/LDPC Codes)

* Inference: General solutions based on Markov Chain Monte Carlo



I ILLINOIS

CSL | Coordinated Science Lab

Probabilistic Models: Core of Many Al Apps

* Probabilistic modeling: integrates domain knowledge, quantifies uncertainties

* Probabilistic programs: Encode probability models

12 XBOX LIVE
GOLD
Sensor Fusion in Self Driving Vehicles Skill Matching in Online Gaming 4G or 5G Communication Devices
(TrueSkill 1&2 from Microsoft) (Turbo/LDPC Codes)

* Inference: General solutions based on Markov Chain Monte Carlo
* Extremely compute intensive & real time constraints
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Our Approach

Automatically generate efficient accelerator from high level description
1. Abstraction: Domain specific languages
2. Mapping abstractions to an architecture
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Contributions:

Our Approach 1. Identify accelerable kernels

Automatically generate efficient accd 2. Opportunities for parallelism
1. Abstraction: Domai} 3 Knobs for trading off accuracy

2. Mapping abstractio
and performance

Probabilistic Probabilistic
Programming Graphical Model Crhessflow
Languages based IR s

cHSEL
VIVADO!

SYNOPSYS

Inference Procedure
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Example: GMM Clustering Data
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Accelerable Kernels: Random Number Generators

e Expert optimized FPGA URNG
e 4bit LFSR
e 1 cycle latency
* 1 op/cycle

* Traditional RNGs

e Cryptographically Secure
* Rejection sampling: Stalls

Duplicated ALIAS Tables

Uniform RNG

Fundamental operation used in MCMC: sampling uniform random numbers

Shift Registers

(Seed Initialization)

Uniform RNG

Uniform RNG H

Address Generator

Uniform RNG

Controller

Yyvyyy

Inverse
Transform

FP Conversion

1
Parameters‘\ specialization
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Identifying Parallelism: Enter Markov Blankets

* How do we compose the samplers?
* Program dataflow ordering is too conservative

Markov Blanket

* Use to identify
parallelism

* Set of nodes B, for a node x; such that:

Pr(x;|Bs,, A) = Pr(z;|By,)

is the only knowledge needed
to predict behavior node.
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Identifying Parallelism: k-Colorings

* Compute a k-coloring of the graphical model

e Sample all variables with same color in parallel
(Conditionally Independent)

* Synthesize state machines corresponding to
coloring

* Equivalent to sequential

Time_
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Parallelism in the GMM Clustering Example
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Parallelism in the GMM Clustering Example

Pr(a|m)
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Parallelism in the GMM Clustering Example
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Revisiting the GMM Clustering Example

More optimizations:

* Reuse across units
(RNGs, Arithmetic units)

* Pipelining |

Store Query in Memory
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Other Details in the Paper

* Compositional MCMC
* Gibbs, Metropolis Hastings, Hamiltonian

* Speculative Execution
* Speculate past rejected samples

e Accuracy — Performance Tradeoffs
* Bloom Filters; Precision

* Generating IBM-CAPI based DMA Engine

e Little’s Law
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Implementation

BM POVWVERS ”

Controller

4

4_1@§

DMA/
MMIO

PCle / IBM PSL

\

Controller

1 ACMC2 Generated [] Template Based

6-core IBM POWERS CAPI attached Sampling Element (SE) = RNGs + k-coloring controller

Virtex 7 FPGA N x M sampling elements
N =4 (4 DRAM channels on FPGA board)
M = max that can be fit on FPGA
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Evaluation: AcMC? in Real World Models

Epilepsy/Neurosicnece: Identifying epilepsy Security: Preempting advanced persistent
affected brain regions [Varatharajah, threats using host/network IDSs [Cao,
NeurlPS17] HOTSOS15]
Embedded Medical Devices Datacenter network monitoring tools
iEEG electrode Healthy electrodes?
A K >
Y=> FFT =—»  —~ = AcMC? —
Means
‘ Protocol
Parser + = AcMC(C? —
10GbE Flow state Alerts
Inference accounts for of the latency Data

Stream
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Results: Real World Case Studies
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Results: Real World Case Studies
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Significantly better results at much simpler code complexity
LoC AcMC? — 183 for C1 & 146 for C2
LoC OpenCL —961 for C1 & 4861 for C2
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Conclusion

* AcMC?: A High Level Synthesis Compiler for Probabilistic Programs

* Code is open-source and available at
https://gitlab.engr.lllinois.edu/DEPEND/AcMC2

* Looking forward
 How does these models fit in the context of Deep Learning? — Bayesian Deep
Learning
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