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Abstract
The OS load balancing algorithm governs the performance
gains provided by a multiprocessor computer system. The
Linux’s Completely Fair Scheduler (CFS) scheduler tracks
process loads by average CPU utilization to balance work-
load between processor cores. That approach maximizes
the utilization of processing time but overlooks the con-
tention for lower-level hardware resources. In servers run-
ning compute-intensive workloads, an imbalanced need for
limited computing resources hinders execution performance.
This paper solves the above problem using a machine learn-
ing (ML)-based resource-aware load balancer. We describe
(1) low-overhead methods for collecting training data; (2) an
ML model based on a multi-layer perceptron model that imi-
tates the CFS load balancer based on the collected training
data; and (3) an in-kernel implementation of inference on
the model. Our experiments demonstrate that the proposed
model has an accuracy of 99% in making migration decisions
and while only increasing the latency by 1.9 µs.

CCS Concepts
• Software and its engineering→ Scheduling; • Theory
of computation → Scheduling algorithms; • Comput-
ing methodologies → Neural networks.

Keywords
Linux kernel, Machine Learning, Neural Network, Com-
pletely Fair Scheduler, Operating System, Load Balancing.
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1 Introduction
The Linux scheduler, called the Completely Fair Scheduler
(CFS) algorithm, enforces a fair scheduling policy that aims to
allow all tasks to be executed with a fair quota of processing
time. CFS allocates CPU time appropriately among the avail-
able hardware threads to allow processes to make forward
progress. However, the scheduling algorithm of CFS does
not take into account contention for low-level hardware re-
sources (e.g., shared functional units or memory bandwidth)
other than CPU time. There is an implicit assumption that
fair sharing of CPU time implies that other such microarchi-
tectural resources are also divided fairly [2]. That assumption
is often false and leaves the scheduling algorithm unaware
of hardware resource utilization, thereby leading to shared
resource contention and reduced performance.

While prior work has investigated the integration of hard-
ware resource usage in OS load balancing, most attempts
have focused only on resources shared at the chip multi-
processor (CMP) level and depend on predefined schedul-
ing policies or on efforts by the user to manually annotate
resource usage of the programs [5, 7, 16]. There is not a
system-wide solution that works for all general processes,
or one that can take advantage of the dynamic contextual
information available from tracing and telemetry data from
the system. Traditional methods are fundamentally limited
in having to effectively quantify relationships between differ-
ent resources and application performance, which indeed is
a hard problem. One solution is to use machine learning (ML)
in the kernel to model and tackle the problems described
above. Even small gains can translate into big savings at the
level of large data centers. An important step in building an
ML engine that can outperform the standard CFS Linux load
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balancer is to see whether it is possible to match the current
load balancer performance. The insights thus gained, as we
will show, can be quite valuable in the next step, namely
building an engine that can outperform current techniques.

ML in the Kernel. The ML approach will have to (i) per-
form load balancing in Linux that emulates original kernel
decisions; (ii) include hardware resource utilization models;
(iii) train the model to solve specific cases with high resource
needs that cause frequent contention; and (iv) apply rein-
forcement learning to the model to optimize load balancing
performance. To exemplify the types of resource contention,
consider simultaneous multi-threaded (SMT) threads on a
CMP that appear as identical logical CPU cores to the OS,
but share most of the computing resources on the chip, in-
cluding caches and registers. Processes scheduled to run on
different SMT threads at the same time contend for the re-
sources on the chip. Similarly, CPUs within the same NUMA
node share memory and I/O bandwidth. In the end, we aim
to implement an ML module inside the kernel that monitors
real-time resource usage in the system, identifies potential
hardware performance bottlenecks, and generates the best
load balancing decisions.

Contributions. In this paper, we present the results of the
first step, i.e., an ML model and an implementation to replace
the CFS load balancer. The proposed approach consists of:
(1) Collection of runtime system data via dynamic kernel

tracing, using eBPF (described in Section 3.2).
(2) Training of the ML model using collected data to emulate

task migration decisions (described in Section 3.3).
(3) Two implementations of the model in the kernel, one

with floating-point arithmetic and one with fixed-point
arithmetic (described in Section 3.4).

The ML model is trained offline in the user space and is
used for online inference in the kernel to generate migration
decisions. The performance of the in-kernel ML model is as
follows:
(1) 99% of the migration decisions generated by the ML

model are correct.
(2) The average latency of the load balancing procedure is

13% higher than the original kernel (16.4 µs vs. 14.5 µs).
(3) During testing, our approach produced a 5-minute aver-

age CPU load of 1.773 compared to Linux’s 1.758.
The work described in this paper was based on the Linux

4.15 source code. The code used in this paper can be found at
https://github.com/keitokuch/MLLB, and the modified ker-
nel source can be found at https://github.com/keitokuch/
linux-4.15-lb.

2 Background: The Linux Scheduler
Across its lifetime, the Linux process scheduler has experi-
enced two major innovations. Until version 2.6, the Linux

kernel had used a straightforward 𝑂 (𝑛) scheduling algo-
rithm, which iterated every runnable task to pick the next
one to run. In 2003, the 𝑂 (𝑛) scheduler was replaced with
the 𝑂 (1) scheduler which runs in constant time instead of
linear time. The𝑂 (1) scheduler managed running tasks with
two linked lists for each task priority, one for ready-to-run
tasks and the other for expired tasks that have used up their
timeshares. Later, Linux abandoned the concept of having
predefined time slices. The Completely Fair Scheduler (CFS)
was introduced to the kernel in Linux 2.6.23 in 2007 together
with the design of the Modular Scheduler Core [13], and has
since been the default Linux scheduler. We refer to that latest
design as the Linux scheduler. The scheduler implements in-
dividual scheduling classes to which the Modular Scheduler
Core can delegate detailed scheduling tasks. Existing sched-
uling classes include the rt class for real-time processes; the
fair class which implements the CFS; and the idle class,
which handles cases when there is no runnable task.

The scheduler comprises a large portion of the kernel
source and resides in the <kernel/sched> directory and the
scheduler core is implemented in <kernel/sched/core.c>.
The Linux scheduler uses per-CPU allocated runqueues for
faster local access, and the load balancing algorithmworks by
migrating tasks across the per-core runqueues. The primary
granularity of work scheduled under Linux is the thread (and
not the process). The threads are not scheduled via direct
attachment to the per-core runqueues, but as schedulable
entities (sched_entity) attached to subordinate class run-
queues managed by individual scheduling classes.
2.1 The Completely Fair Scheduler
The CFS is the most complicated part of the Linux sched-
uler and is implemented in <kernel/sched/fair.c> with
10,000 lines of code. The CFS schedules threads that have
policies of SCHED_NORMAL and SCHED_BATCH. As mentioned
above, the CFS manages its own runqueue structure cfs_rq
in the per-CPU runqueue. cfs_rq sorts the sched_entity
of all runnable threads on it in a red-black tree (a kind of
self-balancing binary search tree) that uses virtual runtimes
as keys. When asked to pick the next task to run, CFS returns
the task corresponding to the sched_entity with the most
insignificant virtual runtime, which is the least executed task.
In that way, all tasks in the queue can get a fair chance to
run. To reflect task priorities, the virtual runtime accumu-
lates more slowly for high-priority tasks and they get to
run longer. With version 2.6.38 of Linux, the Control Group
scheduling policy (cgroup feature) was added to enforce fair-
ness between groups of threads. A group can be a process
with multiple threads, a user, or a container. Processing time
is allocated fairly among the groups on the same level and
further divided up by the threads in the groups. That flexible
allocation is achieved with the sched_entity and cfs_rq

https://github.com/keitokuch/MLLB
https://github.com/keitokuch/linux-4.15-lb
https://github.com/keitokuch/linux-4.15-lb


Machine Learning for Load Balancing in the Linux Kernel APSys ’20, August 24–25, 2020, Tsukuba, Japan

mechanism. A cfs_rq has its own sched_entity and can be
scheduled by another cfs_rq. That hierarchical structure is
a nested tree of schedulable entities. The root node is the
root cfs_rq attached to the per-CPU runqueue structure;
each non-leaf node is a cfs_rq that stands for some control
group, and the leaf nodes are the runnable threads.
2.2 CFS Load Balancing
The CFS periodically runs the load balancing code as a soft-
ware interrupt (softirq) to balance the workload across the
cores. The system achieves the balancing by pulling work
from the busy cores and moving it to the free cores. Such load
balancing decisions are based on the cache and NUMA local-
ity. The CFS partitions computing cores hierarchically into
scheduling domains (sched_domain) for each hardware level.
During periodic load balancing triggered by the timer inter-
rupt, the workload is balanced within each sched_domain.
CPU cores in a sched_domain are separated into scheduling
groups (sched_group). Runnable threads are migrated be-
tween the groups to ensure that the groups’ workloads are
balanced within the domain.

We will do a brief walk-through of the CFS load balancing
code. The periodic scheduler function scheduler_tick() is
called by the timer interrupt handler on each CPU core at a
predefined frequency. Function trigger_load_balance()
called by scheduler_tick() raises the SCHED_SOFTIRQ soft-
ware interrupt when it is time to do load balancing. The
softirq executes the run_rebalance_domains() function,
in which two types of load balancing are triggered: first
nohz_idle_balance, in which the current core checks for
idle cores whose periodic scheduler ticks were disabled to
save energy; and then, the normal load balance, which checks
for intra-domain load imbalance.
The real load balancing work then begins. For both

types of load balancing, the kernel iterates through the
sched_domains the current CPU is in, following the hier-
archy from the bottom up, and calls the load_balance()
function on each domain to ensure that the domain’s work-
load is balanced. In the load_balance() function, the load
balance eligibility of the current CPU is first checked. To
avoid unnecessary repeated work, usually only the first idle
CPU, or the first CPU in the domain when none is idle,
should do the balancing. The CFS then checks for imbal-
ance within the domain, and if a rebalance is needed, it
finds the busiest sched_group and the busiest core in the
group. To migrate tasks from the cfs_rq of the overloaded
CPU core to an eligible destination, load_balance() calls
the function detach_tasks() followed by attach_tasks().
detach_tasks() iterates through the runnable threads on
the overloaded cfs_rq, calls the can_migrate_task() func-
tion to test whether each of the tasks can be moved, and
detaches for migration threads up to the load needed to

correct the imbalance. Detached tasks are then added to
the destination core in attach_tasks(). In addition to ap-
plying some hard conditions that would prevent moving,
can_migrate_task() decides whether a thread is suitable
for migration by doing heuristic estimation on the cache and
NUMA locality information of the thread. A thread that is
likely to be cache-hot on the current CPU or to be facing a
cross-nodemove is discouraged frommigrating. In a nutshell,
in periodic execution of the load balancing procedure, in
each sched_domain, the load_balance() function is called
on an underloaded core to balance the load. It calculates the
load imbalance in the domain and arranges for threads to be
pulled from a busy core. To ensure system performance, the
can_migrate_task() function prevents migrations that are
inadvisable based on cache/NUMA locality.

3 Imitation Learning in Linux
To assist the load balancing procedure by using machine
learning, we take the can_migrate_task() function as the
entry point and use supervised imitation learning to replace
part of its internal logic with an ML model. We trained a
Multi-Layer Perceptron (MLP) model to emulate the load bal-
ancing decisions made by the kernel based on the cache and
NUMA locality to determine whether a task should be mi-
grated. We implemented the forward pass of the MLP model
in pure C code with floating-point calculations and embed-
ded into a new function should_migrate_task() that will
be called by can_migrate_task(). To improve the perfor-
mance and reduce latency, we developed a second implemen-
tation, using fixed-point arithmetic.
3.1 Experiment Setup
The experiments in this paper were conducted on an x86-
64 computer that consisted of two NUMA nodes (sockets),
each running an Intel Xeon E5 processor with 14 cores and 2
SMT hyper-threads per core. Kernel development and model
evaluation were performed inside a QEMU virtual machine
(VM) that emulated the system topology of the host machine.
3.2 Data Collection
To emulate the kernel’s load-balancing behavior, we needed
to collect runtime statistics and corresponding migration
decisions made by the kernel. We used eBPF and BCC to
collect the migration-related data of the running system
through dynamic kernel tracing with kprobes, and prepared
the data for model training in Python.

eBPF (extended Berkeley Packet Filter) is a built-in func-
tionality that was added to the kernel for the Linux 3.15 re-
lease. It allows the user to attach special user-generated eBPF
programs to specific kernel code paths. User-defined eBPF
code is compiled into intermediate bytecode and examined by
an in-kernel verifier before being attached to kernel events
including kprobes, uprobes, tracepoints, and perf_events.
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Figure 1: Layout of data collectionwith BCC and eBPF.

The loaded eBPF program gets executed whenever the ker-
nel event triggers. eBPF programs can use memory-mapped
buffers to store data and transport data from the kernel space
to the user space, but they can only access the kernel struc-
tures and functions defined in the kernel headers.

BCC (BPF Compiler Collection) is a toolkit that uses eBPF
for kernel tracing. It provides several convenient kernel per-
formance measurement tools and a Python interface for gen-
erating eBPF programs.

kprobes (kernel probes) is a debugging mechanism in
Linux for probing kernel code execution. A pair of kprobe
handlers are registered for a kernel function of interest. The
two handlers are then executed before the entry and after
the return of that function.
To achieve runtime data extraction from the kernel, we

defined two eBPF functions in a BCC Python program to
be compiled and attached to the entry and return of the
can_migrate_task() function as kprobe handlers. The en-
try eBPF probe has access to the function parameters, while
the return probe has access to the return value. Thus, we
store the load balancing related statistics at the entry func-
tion in an eBPF hash map that uses the pid and CPU number
of the current process as key, and then retrieve the stored
data by using the same key at the function return and submit
the data together with the return value, to the user space
BCC program for collection. Since eBPF programs can only
access limited kernel functions, the hard condition tests in
can_migrate_task() cannot be reproduced correctly in the
eBPF probes. To resolve the inaccuracies brought by the un-
captured conditions, we modified the kernel and added a
test flag to indicate whether the task has passed all the hard
condition tests, as we only need cases for which migration
is possible. The record entries in which the test flag has not
been set are filtered out in the preprocessing stage. The data
collection workflow is shown in Figure 1.

Collected migration-related data fields include:
1) Idleness of the target CPU core.
2) Source and destination NUMA node numbers.
3) Preferred NUMA node of the process.
4) Loads of the source and target CPU cores.
5) Lengths of the CFS runqueues of both cores.
6) Number of processes prefer to stay on the source core.
7) Time the process has been running on the source core.
8) Number of NUMA faults the process had on each node.

Table 1: Hyperparameters used for training

Hyperparameter Opt Value Min Value Max Value

Learning Rate 3 × 10−4 1 × 10−5 1.5 × 10−3
Decay 3 × 10−6 1 × 10−6 1.5 × 10−4
Batch Size 64 16 128
Validation Split 0.1 0.1 0.1

9) Number of failed balancing attempts.
3.3 Multi-Layer Perceptron Model
The proposed approach uses a multi-layer perceptron (MLP)
model to aid the load balancing process in the kernel. We
chose MLP because our current work doesn’t require a very
complex model and MLP has a relatively simple implemen-
tation compared to the other models.

MLP is a type of shallow artificial neural network (ANN).
We designed an MLP model with 15 input features, one fully
connected hidden layer with 10 nodes, and an output layer
with one node. A rectified linear unit (ReLU) activation func-
tion is applied after each node in the hidden layer.
Using the approach described in Section 3.2, we built a

corpus of 500,000 load-balancer invocations to create the
training dataset. The dataset consists of data collected while
the system was running various levels of workloads because
the distribution of load balancing decisions made by the
system is biased on different loads. The stress-ng stress-
testing programwas used to emulate different load levels. We
collected the same amount of training data while the system
was running 30, 60, and 120 stressor threads, corresponding
to approximately 50%, 100%, and 200% average CPU load.
After preprocessing, 15 input features were generated

from the 9 collected data fields described above. For example,
an input feature that indicates a cross-node migration was
derived from the source and destination node numbers, and
the idleness of the target CPU was processed into one-hot
encoded features. Each entry in the dataset has a 1-D vector
of features and a class label that takes value in [0, 1], which
is the return value of the can_migrate_task() function.
We then used an Adam optimizer to train the model and

stored the weights and structure of the trained network for
use by the in-kernel implementation. We obtained the opti-
mal values for the hyperparameters after sweeping through
a range of values as noted in Table 1. An early-stopping
callback was used to stop the training when the model had
reached a stable fit. We used the binary cross-entropy as
loss function as we were addressing a binary classification
problem. Figure 2 illustrates the training process showing
the loss of the model as a function of trained batches.
In a ten times Monte Carlo cross-validation, the model

was trained ten separate times, each with 10% of the dataset
held out randomly as the evaluation set, and we used the re-
maining 90% of the data for training. The average loss of the
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ten cross-validation runs was 0.0955, and the average evalua-
tion accuracy was 99.24%. The cross-validation results show
that the MLP model can reproduce current kernel migration
decisions very well.
3.4 MLP Implementation in Kernel
The forward pass of the MLP model was added to the ker-
nel in a new function should_migrate_task() as an op-
tional kernel configuration that replaced the original cache
and NUMA locality-checking logic. The feed-forward proce-
dure’s matrix multiplication is implemented using floating-
point numbers and the weights and biases of the trained
model are stored in static memory. Figure 3 provides a
schematic diagram of the algorithm design.

However, floating-point operations are generally avoided
in the kernel. When floating-point numbers are used in
Linux kernel code, all floating-point calculations must be
guarded between a pair of macros kernel_fpu_begin() and
kernel_fpu_end(), since the Linux kernel doesn’t save and
restore floating-point unit (FPU) states at context switches
[17]. The Linux kernel does not use floating-point operations
because some computer systems might not have an FPU and
not having to save and restore FPU states allows faster con-
text switches. As a result, the use of floating-point numbers
brings extra overhead to our calculation-heavy application,
and that can be avoided if we use fixed-point numbers.

Therefore, we reinvented the original implementation by
adding support for fixed-point arithmetic to achieve better
robustness and lower latency. The approach will be described
in the next section, and as we will see in Section 3.6, the
fixed-point implementation reduces the latency by 17%: for
the can_migrate_task() function, the latency of the fixed-
point version is 1.36× that of Linux CFS, and the latency of
the floating-point version is 1.64× that of Linux CFS.
3.5 Fixed-Point Implementation
The idea of fixed-point number representation is to use a
fixed number of bits to store the integer part of the number
and the remaining bits to store the decimal part. Whereas a
floating-point number can use a changeable number of bits
for the whole part and the decimal part and achieve variable

range and precision, a fixed-point number has a fixed decimal
point position and immutable range and precision.
A fixed-point representation consists of the total word

length (𝑊𝐿), the number of integer bits, and the number of
fractional bits in a fixed-point number. In a𝑄-point notation
of the form 𝑄 ⟨𝑄𝐼 ⟩.⟨𝑄𝐹 ⟩, where 𝑄𝐼 is the number of integer
bits, 𝑄𝐹 is the number of fractional bits, and𝑊𝐿 = 𝑄𝐼 +𝑄𝐹 .
𝑊𝐿 is the total number of bits that can be used to represent
the fixed-point number. We use 32-bit integers as fixed-point
numbers and have a𝑊𝐿 of 32, in a 𝑄21.11 representation.
To determine the suitable QI and QF, we considered the

maximum range and precision we need. One approach would
have been to start with the resolution (decimal precision) we
needed in our representation and find QF and then check
whether QI was sufficient to cover our required integer range.
The resolution of a fixed-point number is 𝜀 = 1/2𝑄𝐹 . The QF
required by a fixed-point number with a resolution require-
ment of 𝜀 is 𝑄𝐹 = ⌈log2 (1/𝜀)⌉.
After experimenting with different resolutions of the

model weights, we found that a precision granularity of
𝜀 ≤ 0.0005 should be used to ensure the model’s quality.
Hence, 𝑄𝐹 = ⌈log2 (1/0.0005)⌉ = ⌈10.96⌉ = 11 fractional bits
are required to achieve a resolution of 𝜀 ≤ 0.0005. We are
left with 𝑄𝐼 = 𝑊𝐿 − 𝑄𝐹 = 32 − 11 = 21 integer bits. A
fixed-point number 𝛼 with 𝑄𝐼 can take from the range of
−2𝑄𝐼−1 ≤ 𝛼 ≤ 2𝑄𝐼−1 − 1. For 𝑄𝐼 = 21 we have a range of
[−1048576 ≤ 𝛼 ≤ 1048575] and this range is sufficient for
our neural network computations. We established a notation
of Q21.11 for our fixed-point numbers which has a finest
precision of 𝜀 = 0.000488281. To convert a floating-point
number to a fixed-point number, the floating-point number
is multiplied by a scaling factor: 𝛼 𝑓 𝑥𝑑𝑝𝑡 = ⌊𝛽𝑓 𝑙𝑡𝑝𝑡 × 2𝑄𝐹 ⌋

While the scaling can be achieved by bit-shifting the float
to the left by QF bits, we first define the fixed-point base as
1 << 𝑄𝐹 and multiply the float by this fixed-point base. The
reason is that the left shift of a negative integer is undefined,
and the right shift of a negative integer is implementation-
dependent. Also, the truncation of a shifted number rounds
downwards and causes precision loss. When we convert
a constant real number to the fixed-point format we add
0.5 or −0.5 (based on the sign) to the scaled number before
typecasting, so that we round to the nearest whole number.
The resulting conversion algorithm is:
FxdPt = (FltPt * (1 << QF) + (FltPt >= 0 ? 0.5 : -0.5).

The addition and subtraction of two fixed-point numbers
are the same as those of integer operations. After multiplying
two fixed-point numbers directly, we get a result with the
fixed-point base factor applied twice. We need to remove
the extra scaling factor by dividing the result by the base.
Notice that the numbers need to be cast to a type with double
WL (int64) before the multiplication because otherwise,
overflow could happen. Divisions work in a similar way. The
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Figure 4: Latency of the evaluated load balancers.

dividend and divisor are first cast to a type with double WL
and then back to the original type after the division.
3.6 Evaluation and Results
We evaluate the test accuracy of the model inside the kernel.
For both the floating-point and fixed-point implementations,
we collected 30,000 lines of logs containing decisions made
by the in-kernel MLP model and the original kernel. The
decision accuracies of both implementations are over 99%.
We measured the extra runtime overhead brought by

the MLP model to the kernel by running a BCC program
that tracks the latency between the entry and return of the
can_migrate_task() function and the load_balance()
function. Figure 4 shows the distribution of function latency
when we ran the original Linux algorithm, the floating-point
MLP, and the fixed-point MLP.
As shown in the plots, the in-kernel MLP model brings a

moderate amount of extra latency and variance in execution
time to the kernel functions. The fixed-point implementation
shows an improved latency compared to the floating-point
implementation, with an average reduction of 17%. Because
of its obvious advantages, we will use the fixed-point im-
plementation to represent the in-kernel ML model in the
subsequent evaluations. On average, the ML model with
the fixed-point implementation adds an overhead of 0.4µs
(36%) to the can_migrate_task() function and 1.8µs (13%)
overhead to the load_balance() function.

The performance of the in-kernel ML model in doing load-
balancing work shows whether the extra latency impacts
the load balancing ability of the system. We tested it by
finding the maximum difference between the length of the
runqueues (maximum imbalance of the number of jobs on
cores) across the system when the system was running a
large number of tasks.
We wrote another BCC program to sample the cfs_rq

lengths of all CPU cores in the system continuously while
different high-load parallel benchmark programs were being
run, and we recorded the difference in the number of tasks
between the most and least busy cores ten times a second.
The same test programs were run for collection on both the
original kernel and the new kernel for the same length of
time. Figure 5 shows the distribution of job imbalance.

We can see from the plot that both the original kernel logic
and the in-kernel ML model exhibited the same frequency of

occurrences of maximum job imbalances larger than 11. The
occurrences of job imbalance below 11 are different for the
two, but further experiments are needed to determine how
this affects the two implementations’ performance.
Similarly, we plotted the distributions of the total run-

queue lengths of both implementations while the system
was running a significant number of jobs (see Figure 6). In
the figure, the density (y-axis) is displayed in the log scale to
show any subtle disparity between the two distributions. The
occurrence of runqueues with around 10–22 jobs is higher
for the system running the ML model than for the original
kernel. The extra load caused by the ML model was reflected
in the system’s workload, although the effect was tiny.
Last, we evaluated the performance of the modified sys-

tem in executing real-world programs. Benchmark programs
from the PARSEC Benchmark Suite of Princeton Univer-
sity [3] were used as examples of real-world parallel pro-
grams for testing. We tested the modified system with the
blackscholes, ferret, freqmine, and swaptions appli-
cations and the dedup kernel from the benchmark suite. The
benchmarks were run using 80 threads with the native-size
inputs. We also implemented a C program that calculates
Fibonacci numbers by recursively spawning pthreads to do
the computation. That benchmark program, named fibo, was
used as an example of programs that rapidly create and de-
stroy a massive number of threads and are heavily affected
by the load balancer’s performance.
The average runtimes of 20 runs of the benchmark pro-

gramswhen running the new and original systems are shown
in Figure 7. There is no significant discrepancy between the
two systems in the runtimes of the benchmarks, although
they show varying performances for different programs. We
conclude that the new kernel with the fixed-pointMLPmodel
integrated into the scheduler is doing as well as the original
kernel in running real-world programs.

4 Lessons Learned and Future Work
Based on our experience in building and evaluating the pro-
posed system, we list some key insights that will drive the
design of future ML-based OSes:
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Figure 7: Mean runtimes of benchmark programs.
• Insight 1: Models need to capture dynamic and contex-
tual application information. That is, trained models differ
based on what the system state was when the training
data were collected. For example, a model trained solely
with data collected when the system had a high average
load, although evaluated to have a 99% accuracy, achieved
only 85% accuracy when tested on an idle system. Train-
ing the model with a comprehensive set of usage data that
contain different classes of workloads can be important in
improving performance.

• Insight 2: The tools we used to develop the ML model,
including Python and TensorFlow, are not available in
the kernel. The current tools need to be enhanced and
migrated into the kernel space so the ML-based scheduling
models can be trained and inferred in the kernel itself,
saving development effort.

• Insight 3: Hardware performance counters can be inte-
grated as input to our model via the Linux perf_event
subsystem to provide resource usage information.

• Insight 4: Use of deep reinforcement learning can signifi-
cantly help improve the performance beyond that of the
current CFS scheduler, as it can capture dynamic contex-
tual information not currently used.

5 Related Work
OS Scheduling. OS researchers and engineers have been
continuously refining existing scheduling algorithms and
designing new ones. In [12], Lozi et al. identify four perfor-
mance bugs that affected the functionality of the Linux CFS
and provide solutions to some of them. The bugs were load
balancing related and caused by incorrect handling of the
NUMA topology, flawed load-tracking metrics, and other
issues. In 2009, veteran kernel programmer Con Kolivas de-
veloped the BFS [11] as an alternative to the CFS for better
desktop responsiveness and more straightforward implemen-
tation. In [8], Faggioli et al. described how they implemented
an Earliest Deadline First (EDF) scheduling class for the Linux
kernel as an addition to the CFS scheduling class, intending
to enhance scheduling for time-sensitive applications.

Hardware Resource Management. Different ap-
proaches have been studied to optimize the allocation of
hardware resources during task scheduling. To resolve the
SMT co-scheduling problem, prior work has suggested
optimized scheduling policies for SMT cores [7, 15] and an

ML-based resource allocation framework [4]. Tillenius et al.
[16] proposed a resource-aware load balancing framework
in which task resource consumption is annotated by the
users and optimized by the scheduling policy.

Machine Learning in Scheduling.There have also been
prior efforts to apply machine learning to improve OS task
scheduling [6]. A common approach is to train machine
learning models to learn the CPU utilization of the processes
based on execution history, and then classify them to use
different scheduling strategies [9, 14]. In [9], the authors
tuned the scheduling policy by setting “nice” values of the
processes based on predicted Turn-around-time (TaT). In
[14], customized execution time slices were deliberately set
in a Linux𝑂 (1) scheduler according to predicted CPU utiliza-
tion of the processes. Previous work that combined machine
learning and resource-aware scheduling mostly focused on
application scheduling in heterogeneous systems. Successful
attempts have been made to train machine-learning models
to perform dynamic scheduling of applications with varying
workloads in user space on heterogeneous hardware con-
sisting of CPUs, GPUs, and hardware accelerators [1, 2, 10].
In [2], hardware performance counters were used to make
measurements of the utilization of system resources as input
to a reinforcement learning ML model.

6 Conclusion
In this paper, we explored the application of machine learn-
ing to the OS load balancing algorithm of a multiprocessor
system. We used imitation learning to incorporate a machine
learning model as a system component in the kernel. The
evaluation results show that the overhead brought by the in-
kernel ML module does not impact system performance. Our
experiment results indicate that it is indeed feasible to apply
machine learning to tune the load balancing policy in the
OS kernel. In future work, we intend to add statistics from
hardware performance counters to the model and use deep
reinforcement learning to improve the load balancing policy
based on hardware resource usages of running processes.
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